RECORD

Rockirlle, Wd.

$$
W H-6-4455
$$

Nationd fustitutes of Health
Bethesda, Wd! $9-A-17$
Bedg $\frac{31}{4}$
Plow 496-4325

Mostly 1964 Research Diary
$6 / 19 / 63$
The propose of this record is to collect notes of out hines presently on loose sheet of poper, with a view to a more efficient dispatch of unfinished popers based on accumulated computations. Basic problem seems due to two principal factors:
(1) evoluning research interests
(2) priority given to invited papers.

Solution would seen to the in brief papers minster of buried notes.
(This comment fellows net leary ofracompleting Ojai memsoript)

Here is copy of list prepared 2/13/62 just lofore Wash. Borphys-Sor. Meeting
(1) Complete bosic potentíal distribution poper
(a) This nivolves completion of fizures
(b) new introduction
(2) Menbrone potertial to bedealt with in a separote poper. Thiscould include: Sum of series approoch and a briof secop of σ_{e} and σ_{i} of 1953 abstroct (relotion of $\sigma_{e}+\sigma_{i} t_{0} R_{e}$ al R_{i}). Also intezrel for cose of linear fan of ir for extracelbulor Sonsce werghts. Glno discuss isopotentiality of soma suombrane.
(3) Poper with Ezra of Canue
(4) Spherical Sgumetry cose in Stockholas: espanded
(5) Camputations for prysanidal cells
(6) Compretations for geverator potentiol with $p \neq \infty$
(7) Also for finite deudritic length.
(8) Computations for synopitic \& of for $0 \pm \infty$
(9) Curren step to soma fonfrivite devbitir length \& $p \neq \infty$
(10) Poper with aithen or at leost theory
(11) Dunbritic ε de f transfer functions (? ppprox)
(12) ? Fuortes nuodel. Nelson, Terzuolo-Voltage ClaupModel
$3 / 11 / 64$
This will be Bk. 4 to contrine prom bk 3, gust filled.
BK. 1 is sofor mincomplete recond of 1959-1962 couprutations Berigr recoustructed from loose notes of work with Eagra, feame, witurer, Brunelle teasly H-800
BK. 2 recond of Compentwontal Computctions with Besman Wiss prognem 7/62-63 Iuclubes coles for Ojai talso degnenecies o ealy explostion of non-livear sisterns.
BK. 3 record focursed on Proposation Campretations 11/63-3/64 but gramally trumformed itto a sunming research diary with mumbered pages.
$3 / 11 / 64$
The list of rimpirishel popers hos gowon duruz tho past two yeara (le. stince the lost of p.l cues prepored)
Atem (8) and perte/ itam (11) were tocen coresp in the Ojii mannscript propered a yeer ago st recutty read wipase proof.
With Gorbon Slopherd, the lithon material is heing grushed into oublishable form. Ceso, new theretiall result on pp 83-88 of BR3, on enngyig equally powtitle deptit
However hove mich new material to be worked up for problication: (see $p 89$ of $3 k 3$, or p. 5 below)
esp. Theary for Ve in cortical loyer
Oplication to Olfactory Bulb
Wodel for propazation, $\%$ its avolysis

$$
(\text { see pp } 91+93 \text { opk } 3)
$$

Qso minature epsps
Surpedonce effects of semote synapistic a ofvily.
(perthyying relationto Toun smith) axtracell pota. of notoneuron popalatoon (as brougis up againity Von buren) ${ }^{p i s i s k .3}$
Abo nifregress is tree generation with Tarlow of graber Bk3 pp 65, 75,

Note that Aitken's letter of istillochle 1960 eistrinatef order of 20% slisinizage, overall for the longe bods used.

$$
\begin{aligned}
& (0.80)^{3 / 2}=0.775 \\
& (1.25)^{3 / 2}=1.4
\end{aligned}
$$

the deubritic conductance would be 1.4 times that calculated without a correction for shrinkage.

3/12/64 Re introp. o Dendratic Brandiniz
Note that former WXRG03C witu WXR67E woo recent ly revised q recompited os WXR604C inth WXR 68 C . Compried withow trouble, lent systom could not load (syptemersor). 7iñally overcome $3 / 9 / 64-3 / 10 / 64$.
Thisnow version provides for TRFAC $=$ factor correctung for trusehz not seen.
Qlao, computes ratio of extrop. Surfoce ave to seensusfoce area. Celso, prints out the rescabd electiotoni lougthes eoch time also computes RNBAX, RNTWAX, RNINF F oprints $\{$ GNBAX, GNTWAX, GNINF
Wroteaithen on $3 / 5 / 64$ to niquire specifically about perikargon dypths; whother detting peritiarga can or comnot he culel ont, arl about section thidinera for kitten cells.

Usiz $\bar{f}=\frac{\sqrt{h^{2}+2 h|x|+b^{2}}-b}{h|x|}$ fromp. 87 of Bla. 3

Cansider two cosed for bitten cells

$$
\begin{aligned}
& h=100, \text { with } b=25,|x|=10 \\
& \bar{f}=\frac{\sqrt{126.25-2.5}}{10+2} \\
&=(11.25-2.5) / 12 \\
&=8.75 / 12=0.729 \\
&=1 /(1.38) \\
& \text { for }|x|=0 \\
&\sqrt{106,25}) \\
& \Rightarrow(10.3-2.5) / 10=0.78 \\
&=1 /(1.28)
\end{aligned}
$$

People to write or tath to:
Tom Smith
7itgHugh
aither
Braitenkery
Kothryn Thomes (Vlumesolo)
Dum futang
$3 / 12 / 64$
Popers to he completed (list fromp. 8901363 (atd $3 / 4 / 164$)
Gpoge note for Eccles Coumn rin Five Volume 8/11164
Dendritic Symoptic Patterns: Experinnents witha Mathomatial Modal Poper on Braudng Extapolation for Dendritic Rodial Syonmetry " "Dendritic Surfoge Area Estwnates from Aither's Data
" "Denbitir Aupu Coubuctonce
" "Avalyis of Sholl's data
Theoretical Dists of Ve \& Vi for spherical soma
" "V Ve for asyminatric denbinte (Ezra t Jeamue) * tranmeitts for radially sym (Stochholm 10 min poper) o retation of $V_{i}, 2 V_{i} / 2 x, I m, V_{2}$, ete.
Theory for V with syuch. ac. in cortical loges Comporison of Theory \& Expt. for antidrom, in Olpact, Fll Math. Model For Compnt. of Etction Potential Propagation iuto Regions of Chongury Eovnetry o Sofety Foctor (maghe bealk in Two ?)

- Cals of ruiniature epsp genereted at difperent locations (kats) I locations o degeneracies of appec of B value. ? Hypothoris on syupitic plaquez
?. Eypothesis on core conductonce changes
Diagramnatic 4 des criptive of suizle cell, popalations, layers, synch actibity.

Cesel to doy. Neel to prepare anmual seport.

$$
\Delta \quad h=4 / 2
$$

area olequila. Δ is $\frac{1}{2} b h$
where $h=\sqrt{b^{2}-\frac{1}{4} b^{2}}=\frac{\sqrt{3}}{2} b$

$$
\text { or } \frac{1}{2} b=\frac{1}{\sqrt{3}} h
$$

\therefore area of $\Delta=\frac{h^{2}}{\sqrt{3}}$
and area of he pagan $=\frac{6 h^{2}}{\sqrt{3}}=\frac{6 L^{2}}{4 \sqrt{3}}$
$3 / 18 / 64$
Calculation to relate syuptic conto are as proportion of total area, to contort ratio in profile. Need to assume some sort of model. Suppterse the contact areas are circular and their centers ore arranged according to a hexagonal lattice our the dendritic aurfoce. If d is the diameter of each circle and L is the distance between centers, one wooed expect the average profile ratio of contain to total W be d / L, stile the ratio of contadarea to total area would be

$$
\begin{aligned}
\frac{\text { argot deride }}{\text { areoplexgen }}=\frac{\pi d^{2} / 4}{6 L^{2} /(4 \sqrt{3})} & =\frac{\pi \sqrt{3}}{6}\left(\frac{d}{L}\right)^{2} \\
& =0.907\left(\frac{d}{L}\right)^{2}
\end{aligned}
$$

\therefore if $\frac{d}{k}=1$, get 0.907 for miscribed circle - in
If contotarea in alsohexagoual, get $(1)\left(\frac{d}{L}\right)^{2}$
tHu general, for then lattice, such as if coital area is assund to have same shape ar the lattice elements) get $\left(\frac{d}{h}\right)^{2}$

$$
\text { if shapeifdowferen, get some factor bes thonumity } *\left(\frac{d}{L}\right)^{2}
$$

All this rolevoni to Kathryn Thorax's \% membrane area cornered ll synaptic endings.
$3 / 18 / 64$
A doy o two ago, so phone coll from Wh. Koenig who has a large ayaloy compriter in Engniecrñy fisiun hetund the GEM store 949-3900
Computa belougs to goot. The teoch a conrse nisystems engineerny with it Mampoctered by Epplied Dynamics, fuc. - 152 op, amplifiess, also functiongeneratoas \& uultipliers.
Nish he asful to me to explore ranges of pararnotes which keep system nis same dornarin.

Yestadoy, mepard rough droft of aumual report. Qlso pappared description of bauch generation problem for Bitly Gorke. she reporto tha progrom is

On Third Thousfit $(3 / 22 / 64)$, it may bol to too non coniplicalions to try to tala core of and al freaks of evergithis else. It may be better to keep model very simple for propagation calculations. This nog not be the lind to complicate this model.
Intuitively it seems to me that anodal break would realise cliareses such that $g \neq 0$ for sesthis conditions, hence, alsiq, $\varepsilon \neq 0$. hance, also, might change normalization of $\sqrt{ }$, lin all this wooed lose much of the simplification.

Try, with naif program, reducing RIN B le for tor of 10
and QENCHB by poco of 10 topee an raise twashobl of also folly
phase of strive. phase of spire.

3/26/64 Yastorday Wad linch with Rosheralory of Jinn. converation stimulated me to tes nny impmese model furthoz
for sugle poth
k, V^{3}

$$
\begin{aligned}
\tau \dot{v} & =-(1+\varepsilon+g) v+\varepsilon+\beta g+\psi \\
& =\varepsilon(1-v)-g(v+\beta)-v+\psi \\
\tau \dot{\varepsilon} & \left.=(R A) v^{2}+(R B) v^{4}\right)-[(R C)+(R D) g \varepsilon \\
\tau \dot{g} & =(R E)[(R C)+(R D) g] \varepsilon-(R F) g
\end{aligned}
$$

from p. 93 of Book 3, estimate

$$
\begin{array}{ll}
R_{1}=R A C T * R I N B \approx 3 \times 10^{4} & \text { pan } \approx 450 \\
R C=R O U T B \approx 20 & \text { pedig } \approx 50 \\
R D=Q E N C H B / Q E N C H A & \\
R E=Q E N C A A / R A C T \approx .033 & \\
R F=\text { ROUTC } \approx 3 &
\end{array}
$$

for $V=0.1, k_{\cdot} V^{3}=3 \times 10^{4} \times 10^{-3}=30$
approx theshold.
Wan higher thresh sothet $(R A) V^{2}+(R B) V^{4} \approx 30$

$$
\begin{array}{rl}
\text { If } R B=3 \times 10^{4} & R B(.25)^{4} \% \\
(.0625)^{2} \\
(.039) \\
& \left.R B(3 \times 1)^{2}\right)\left(4 \times 10^{-2}\right)=1200 \\
& \left(3 \times 10^{4}\right)\left(16 \times 10^{-4}\right)=48
\end{array}
$$

Conel start on hy hyyrs 3×10^{4}

WXR605C foat explood the area carrection, twi dol This for XAJhas well as XAJH.
Then, when seised to WXR606C, semoved the area correction XAJL \rightarrow XASJL
aul added the TH for TB charge in conductonce
colculation

$$
\begin{aligned}
& \text { Can nour delete WXR605 } \\
& \text { fleter } 604 \mathrm{C}+68 \mathrm{C}
\end{aligned}
$$

$3 / 27 / 64$
Thuizo tido soon
Qdd giant eytracellular to wxR $991 \mathrm{C}(p .800 / \mathrm{Bl} 3)$
? Question of thrertiold level in current cols with (791C) moy wount to use $k_{1} v^{2}+k_{2} v^{4}$ mistood of $k v^{3} \quad\left(p_{1} 791 k^{3}\right)$

Notpous cbon anosthesia 9 facilitation for antidronic mivosion or $p .77$ of $\mathrm{Bl}^{2} 3$,
Should duplicate WXRT91C, $91 \mathrm{C}, 92 \mathrm{C}, 82 \mathrm{C}$ beconse works well ϕ 'now' wont to revise
? Cesotomsuinth
\# Qlso, ang new figures for Ecoles Volnaue.
? Write Cardive

Highthich ve how hour
for Danlitia Broudiry Poper
The ensitial change is thet lour extropolation
is as it was bofore bi high eytrop
now uses total been for areas
for leng tho, Wheneve, this is larger thon
eytrop from bifurcation (abso amhin lrededoseut) Thisesfor BINB, use TH $\forall \tanh (Z(5,5))$

$$
\text { ahen } z(5,5)>z(J, 2)
$$

anf for Grees, use $X A J H=X A S J H=A S J * F A C S H$ peuring

$$
\text { When This erceeds XASH }=\text { FACSturn }+\pi * S D X 2(J, 2)
$$

$3 / 30 / 64$
to segand perikarjoir depplh as unisuown frit within the enaits 200 u ! "Cut celle would oppeer! as fragments an were not comitt!"
Acon see how the sunall prece is a prognest, biv how abow the large piece.
\therefore using formula on poge 84 of Bh 3
Conservative case $x=\frac{h}{12}$ goves $\bar{f}=0.854$, TRFAC $=1.17$ If $x=\frac{h}{10}$, corresp to 20μ

Volme of splasical segnen $-\frac{1}{3} \pi z^{2}(3)$
Volund of sphere $=\frac{4}{3} \pi r^{3}$
Volund of sphere $=\frac{4}{3} \pi r^{3}$
ie. 15 䉿 35 unodins

$$
\begin{aligned}
& z=15 \mu \rightarrow 3, \quad r=35 \mu \rightarrow 7 \\
& x=20
\end{aligned}
$$

$$
\begin{align*}
h & =20, x=2, b=5 \\
\bar{f} & =\frac{\sqrt{(18)^{2}+5^{2}}-\sqrt{4+25}}{20-4} \\
& =\frac{\sqrt{324+25}-\sqrt{29}}{16} \tag{13}\\
& =\frac{18.69-5.38}{16} \\
& =\frac{13.31}{16}=0.833_{2}=\frac{1}{1.203}
\end{align*}
$$

unculpestinaxon $\left(\frac{67}{80}=84 \%\right.$

$$
\# 1,16,22,57,58
$$

quite libaly these are the oves whose \rightarrow truncotion hoppenel to bone ng siference tree long enoight to pexnit furthe extropplation. tu that case the Gonges onesmar le closer to the trath.
$4 / 3 / 64$
Atound yenterdoy, in examinis Dithen's 1 Onemorn, that doudsitic sicifoce area percentages with onden of bruching are probobly beftor eypressed separatety for two grougs of fove.

Trumbs Prin Sec Ters Quat Quin Sex $\begin{array}{llllllll}\text { Longen } & 99 & 16 & 21 & 19 & 20 & 13 & 2\end{array}$

Sherteror $18 \quad 31 \quad 34 \quad 17$ e o 0 Morecut/f

Qleodiscussed with Gordon of lerzth akout min
old ditto where weig thad neon of L / λ is estinady from $\frac{\frac{L}{\sqrt{d}}}{\sqrt{d}}=\frac{\sum L d}{\sum d^{3 / 2}} \quad$ Lohere $d^{3 / 2}$ iveight. the

Wrote neano to Betty Garber cbow cale. of mean longthes, plon to write beth to Kathony Thermas ofon o bove percentages.
Qbo, way wosle to uiding wXh 606 C to proride $\frac{S D}{N}$ and $\frac{S L}{N}$ for all cotegories.
Moy, need $\frac{S L}{N}$ \& Btidrollenth forcomparison with
 (2. पंय) करो देवा सरे जित पै द हा णह PI TG N1 ज्या

4/T/64 Comersation with fosse began with relation lotween Laplore transfomn + Fourier transform.
Laplace transform maphos prom hoff plane $R(A) \geq 0$
then the foetor $e^{-s t}$ can tame mild blow up of a for

$$
f(t)=b\{F(t)\}=\int_{0}^{\infty} e^{-s t} F(t) d t
$$

suppose $F(t)=e^{\text {at }}$ which Wlowsupst $t \rightarrow \infty$ aud its transform $\frac{1}{s-a}$ hos a pole at $s=a$
Therefore simple integration possible only for $s>a$, and integration arout the pole gives $e^{\text {at }}$
His point, woos that if there is no pole for $s>0$, then can integrate along iüogniauy axis, it hen this is exactly equal to the Fourier trousform.
Then cuegot to talking abound whether one can get from a Bode diagrom (which appliesto A. C. sterdystace) books to complete transform which gores transient solutions Huprincible, yes, because analytic fins in complex plane are such tho all can be recovered from a precise defy in a small potion of complex plane. But wo oboe in practice. Oust thovghtivas, suppose we sot up a model which fits Bode. except we miss a pole far out in consuls of lane. What will this ensor due to the computed hausiont response?

$$
R_{\text {appox }}-R=R^{\prime}-(x+1) R
$$

$4 / 7 / 64$
This led to the following corijecturs abort cancelling a pole in complex plane.
Consider $F \rightarrow \overrightarrow{W W \mid} \longrightarrow R$
Suppose $L\{W\}=\frac{1}{(s+a)(s+b)(s-\lambda)}$

Then pole will he cancelled for respoure, provided that $L\{F\}$ has $s-A$ in the numerator

$$
\text { say } h\{F\}=\frac{s-\lambda}{(s+c)(s+d)}
$$

Then $L\{R\}=\frac{1}{(s+a)(s+b)(s+c)(s+d)}$
which hes no pole
Thisneans the although $W(t)$ blows up $R(t)$ does not
proud $F(A)$ fit i above
Also, now, if $L\{$ Wappor $\}=\frac{1}{(s+a)(s+b)}$

$$
\begin{aligned}
\text { then } \begin{aligned}
L\left\{R_{\text {approx }}\right\} & =L\{F\} \cdot L\left\{W_{\text {prox }}\right\} \\
R_{\text {approx }} & =R^{\prime}-A R
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { त्रे पWाद } 7 \text { Nowe }
\end{aligned}
$$

$45 /(4)$
$\log _{1}$ suppose $L\{W\}=\frac{1}{(s+1)(s-2)}=\frac{-1 / 3}{s+1}+\frac{1 / 3}{s-2}$
then $W=\frac{1}{3}\left(e^{2 t}-e^{-t}\right)$

Suppose $L\{F\}=\frac{s-2}{(s+3)(s+4)}=(s-2)\left(\frac{1}{s+3}-\frac{1}{s+4}\right)$

$$
\begin{aligned}
F & =(D-2)\left(e^{-3 t}-e^{-4 t}\right) \\
& =(-3-2) e^{-3 t}-(-4-2) e^{-4 t} \\
& =-5 e^{-3 t}+6 e^{-4 t}
\end{aligned}
$$

$$
\begin{aligned}
L\{R\} & =\frac{1}{(s+1)(s+3)(s+4)} \\
& =\frac{+1 / 6}{s+1}-\frac{1 / 2}{s+3}+\frac{1 / 3}{s+4} \\
R & =\frac{1}{6} e^{-t}-\frac{1}{2} e^{-3 t}+\frac{1}{3} e^{-4 t} \\
& =\frac{1}{6}\left(e^{-t}-3 e^{-3 t}+2 e^{-4 t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 \cdot \frac{2}{2}
\end{aligned}
$$

4/15/64 WXR793 C modof 791 C
WXR 93 C modo/ 91 C
Modifed Mani progrom o ove Runze Kutta to ochìve troo pruposes I fuclude giant Egtracellulor II Use V'4 for steper onset

$$
\frac{d}{d t}\left(V_{g}-V_{e}\right)=\frac{d}{d t}\left(V_{i}-V_{e}\right)+\left(V_{i}-V_{e}\right)-\beta\left(V_{g}-V_{e}\right)
$$

Thus we put in WXR93C

$$
\begin{aligned}
& 4531 D 0 . D 532 \quad J G=K G, N G \\
& 4532 D Q(J G, J R) \Rightarrow \\
& <D Q(J S, J R)+A(J S)-B=1 A(J G) * A(J G)
\end{aligned}
$$

and noke suitable changes of $500,5091,530,5391,560,5691$ Also 483,582 . Dinensoon Beta (14) Equivelence (RINB, RBCQ), (RNC, $R B F R)$
unitronse tranble

Defrie

$$
\left.\begin{array}{ll}
K G=N Z+1 & \text { BETA }(K G)=2 . \\
L G=N Z+2 & \text { BRTA }(L G)=5 \\
N G=N Z+3 & \text { BBTA }(N G)=10^{\circ}
\end{array}\right\} \begin{aligned}
& \text { minmain } \\
& \text { mogron } \\
& \text { arganment }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x x^{2} 20\right)
\end{aligned}
$$

$4 / 16 / 64$

$$
\text { WXR } 793 \mathrm{C}
$$

Frist tent did rot wook well: compled of mode further cosnections

$$
\text { also added } G \text { funo } V^{4} \text { to } 92 C \rightarrow w \times r 94 c
$$

Nowtent ahrodid not wook well, $V(J z=2)$ does not seem to get anishere.
$4 / 20 / 64$ pathing in new tests with
$N T=1 /$ and IFTEST $=81$ or $/ 1$
for detaited chedsout.

Pnepared abstrae for I.folucson Wrote lettr to Kathum IMornes summoriziry area results. Read lui did not wite commets on Iamria's cooplng copficients. Discussed + moof seod nayserigt with gordon shiplered. Aobuyst to complete nextf week.

4/21/64 WXR993C still not working well.
Mast obvious difficulty is that $D Q(J Z, J R)$ does not depart from zero for JZ from 2 thea JH Thistast was in 94C, apparently 4724473 wee not carried out.

Retest both yin 791 C of 793 C puttui inertial valves mall compartments. at host this will also provide test of GIe. abs, will lear more above failure of $472+473$
Fwelra: fist found the trouble, argument of 94 C a93C Hos $\triangle A, D D$, USA, USD prom duplication of Call ar or whereas the subroutine was (GA), GD, GSA\&GSD).
Must either charge argumew or use equivalence. staterven. Simpler to use equivalence bur night as well await the results of Thistestg to see if Gie works A also if V^{4} works.

28pmaxy
$4 / 27 / 64$ WXR793C
GVe worhod for possone case, where still used cube functoon, Gn acfire cose WXR93C drew nogatine. Deided to eliminate Equirabuce stateriay for RBSQ an RBFR and tolse core of this with ang.
GVE for Beta $=2$. seemed tollone tooflat an oftes nog. Also, the scale chames for IG $G=L G A N G$ vere too restidor.
\therefore Elharze Beta $(K G)=5$,

$$
\begin{aligned}
& L G=10 . \\
& N G=20 .
\end{aligned}
$$

and keep allGVe plothng scales - -4 to. 7
test pis in trdoy for $F F V E=1$ for possirue cose also Lat witur cose with repoured arg.

$$
\begin{aligned}
& \frac{.05}{28} \cdot \frac{14}{14}
\end{aligned}
$$

$$
4 / 23 / 64-4 / 27 / 64 \quad \text { WXR } 611 C
$$

Modifide WXR606C to couphite the averoge क stdider of dranth
divinot ley tho d dism

$$
\text { for } J, k
$$

- Both foreach all Bin $^{\text {. }}$
fon roups of alls donded ung two finis dands. Noods 3 finis cands a end.

NJCELL (JCELL) stree cll no, ola gnopy. Gdled mary dimansions.

Used formula $\operatorname{Var}(x)=\frac{\sum x^{2}-m \sum x}{N(N-1)}$
Thus $V A R D=(\operatorname{SDSQ}(J, K)-\operatorname{AVD}(J, *) * S D(5, K)) / y$
when $Y=N(N-1)$
Workati on $4 / 23+4 / 24$
Mode corrections 4/27
$4 / 30 / 64$
Prothan 64793.0011
forKV.E $=2$ compare soma eytracellar $\operatorname{col} 4$ with goan $($ Beta $=400)$ Col 11 $\mathrm{Vg}_{\mathrm{g}}-V_{\text {indeff. }}$.
at $K T=19$, giow connest to 2 mV somalle corresp to -1 mV
which agrees with $V \mathrm{~V}-V_{e}=3 \mathrm{~m} V$ at Thisture
Thismplies that $\beta=400$ is for prom neglizible
ie. refernig bodk to poge 80 of Book 3

$$
\beta=\frac{R_{g}+R_{m}}{R g} \quad \text { where } \operatorname{Rg}=A R d
$$

that $\frac{R_{m}}{R_{g}} \approx 400$ is far from neglegitle dnother words, a veglijible Rg is $\ll \operatorname{Rm} \times 10^{-3}$ Honener convergence resistance may he sufficieis to if Rmt is nedicicel. Rg \& for a non-negl. It if Rme is reduced.

GVe shopea look very promisung.

$$
\begin{array}{ll}
\frac{d V_{i}+\frac{V_{i}}{R_{m}^{*} C_{m}}=\frac{d V_{g}}{d t}+\frac{V_{g}}{R_{g} C_{m}}}{} \quad \text { for } R_{m}^{*} \rightarrow R_{g} \\
\frac{\left.d V_{i}+\gamma V_{i}=\frac{d V_{g}}{d T}+\beta V_{g}\right)}{d T} \text { were } \gamma=\frac{R_{m m}}{R_{m}^{*}} \\
\beta & \beta=\frac{R_{m}}{R_{g}}\left(\frac{R_{m}^{*}+R_{g}}{R_{m *}^{*}}\right)
\end{array}
$$

$4 / 30 / 64-5 / 1 / 64 \quad$ giaw eqtracelluler
for fimnosual, the D.E. is (for Ve as roperence)

$$
r \frac{d V_{i}}{d t}+V_{i}=r \frac{d V_{g}}{d t}+\left(\frac{R_{m}+R_{g}}{R_{g}}\right) V_{g}
$$

If $R_{m}>R_{g}$, then con use $\beta \approx \frac{\mathrm{Rm}_{m}}{R_{g}}$
Suppose normal condition is somethnig like $\beta=10^{4}$
Suppose Rin folls hy factor of $100=8$
then c folls dy foctor of 100
ty $T=t / r$ for norwal r
Then $r^{*} \frac{d V /}{d t}+V_{i}=\tau^{*} \frac{\dot{d V}}{d t}+\left(\frac{P_{m}^{*}+R_{g}}{R_{g}}\right) V_{g}$
sualtiply throngh $\operatorname{ly} \gamma$ to get

$$
\frac{d V_{T}}{d T}+\gamma V_{i}=\frac{d V_{g}}{d T}+\gamma\left(\frac{R_{m}^{*}+R_{g}}{R_{g}}\right) V_{g}
$$

Tolexpes, get $\frac{d V_{i}}{d T}+\frac{R_{m}}{R_{m}^{*}} V_{i}=\frac{d V_{a}}{d T}+\frac{R_{m}}{R_{m_{i}^{*}}^{*}}\left(\frac{R_{u^{*}}^{*}+R_{g}}{R_{g}}\right) V_{g}$

$$
\begin{aligned}
& \text { Bur goot enough lypnox is } \\
& \qquad \frac{\frac{d V}{d T}+\frac{R_{m}}{R_{m}^{\pi}} V_{i} \simeq \frac{d V g}{d T}+\frac{R_{m}}{R g} V}{10^{2}} 10^{4}
\end{aligned}
$$

$5 / 164$ Plonto modify progron to
Compute $\frac{d V_{g}}{d T}=\frac{d V_{i}}{d T}+\gamma V_{i}-\beta V_{g}$
where $\gamma=\frac{R_{m}}{R_{m}{ }^{*}}$
R_{m} is nosmel
and $\beta=\frac{R_{m}}{\operatorname{Rg}}\left(\frac{R_{m}^{*}+R_{g}}{R_{m}^{*}}\right) \approx \frac{R_{m}}{R_{g}}$ formon $\geqslant R_{g}$

- Mere β Bin momely gorder 10^{3} to 10^{4}
$\operatorname{trg} \beta=10^{4}$ with $\gamma=1,10,100,1000$

ancta antix

5/1/64 Summarize 64793
64793.0001 -.0005 6 developed prigionn 64793.0006 proved that $N S T E P=2$ wistor swall for hot kinctics
64793.0007 first good GVe for sossive case

- lsosytracellulars $\beta=20,5,10$.
64793.0008 good slightly delayed soma spitize - possinecose Bolvea $320,160,80,40,20,10$
64793.0009 first successful active cose nstep $=4$ GVe for $\beta=100,30,10$
$R B R R=120 \quad$ Here, becoure of hot binatios $\beta=30$ gave $\pi 80 \mathrm{mV}$ peth
$\beta=10$ gove $>100 \mathrm{mv}$
64793,0010A $R B F R=80$ semalitedsed at 20 mV
beeanse of no rendual facil.
64793.0010 B put restual fail in semar donbites avoidd flock, quite geod slupe ood GVe for $\beta=25,50,100,200,400$
64793.0011 prstire cose mith residual facil. Boalves of $100,200,300,400$ Clo sytrallaturas
$5 / 164$
WXR GIC worked fairly well on 4/30/64
got convect areroges \& ST. deviatoris
Aowoer, group totals loused up when one of group hos TMP \subset TMPOP
Consolve this either by using only groups still, all JMP the tame, or better replace 830 with wixpliat do from $J=1$ to 50 MP Then set $I=$ and $I=5 \mathrm{MP}$ al change J to I in lest term of each of these expressions

Charge IMPOP to JOMPOP
ant a 885 use $J=1$ to 50 MPOP

$$
\text { ant then use } J=10
$$

Do area estop with $S D(T, K)=A N N(J K)+A V D(T, K)$

$5 / 6664$
on $515 / 64$ overnan limit of wamber of fixd const t non-limensroend valiables
Toohcoreof this, but on $5 / 6 / 64$ stll hat
to ndre d faw sudell corsectoin
at 21 made $I=1,10$ vistoal if 1, JMP
becanse bin 10 was in trouble
at $542,543,544$ seotored PRED, PREXK
at

$$
\begin{aligned}
& 3221 \quad \text { set JOMP }=\text { JOMPOP } \\
& 3222 \quad X=\text { JCFLL } \\
& 323 \quad F N=1 . / x
\end{aligned}
$$

beconserppasuitly $F N=1 / J C E L L=0$
Now hope for success.
abohad tochorze J to L instatemen 837
Finally got good romilt $5 / 8 / 64$
$5 / 6 / 64$ WXR 793 Coumiled A worked with Beta + grma A RBSQ, PSFR in $94 C$
Horever, got How up for some GVe; suoped dre to Iid hir somia:
Now rums will aosid this.
Got nübertmy result couparing differer combinatron of $\beta+\gamma$

$$
\begin{array}{ll}
\frac{\pi}{2}=1.5708 & \frac{2}{\pi}=0.6366 \\
\frac{4}{\pi}=1.2792 & \frac{\pi}{4}=0.7854
\end{array}: \begin{aligned}
& 2 \text { Dimen } \\
& 3 \text { Dimen }
\end{aligned}
$$

$5 / 8 / 64$
Problem of Ratio: $\frac{\text { projected length }}{\text { true length }}$
of raudomlyoriented branches.
For tranches legging in lomurar planes, Then answer is $\frac{2}{\pi}$ For Grouches dist in, tHere dimensions, ansuris $\frac{\pi}{4}$

Betty Garter first calc of tree 6 times, 6 orders giving total of 378 elements

$$
\begin{aligned}
& \frac{\text { The }}{y-z \text { proc }}=1.257^{\circ} 7 \\
& \frac{\text { True }}{X-Z \text { proc }}=1.3049 \\
& \frac{\text { True }}{x \text {-yproj- }}=1.2399 \\
& \frac{313.2995}{1.2665}
\end{aligned}
$$

which agrees rath ar well with $\frac{4}{\pi}=1.273$
H was this numerical result which led me to clarify the difference botweeri the 2-D and the 3-D assump pions. Long ago both Ramon-alloliver and f hod thought the $\pi / 2$ answerer was correct, because of the specious argon that a plane is a fair same of 3-D.

For any given instance, $l=r \cos \theta, \frac{l}{r}=\cos \theta$
Teget the mean value of $\frac{l}{r}$, we mist evdinate the mitral

$$
\text { men } \frac{l}{r}=\int_{0}^{\pi / 2} \cos \theta \cdot p(\theta) \cdot d \theta
$$

where $p(\theta)$ is the probability density (perradion)
For the $2-D \operatorname{cose}, p(\theta)=\frac{2}{\pi}$

$$
\text { and mason } \frac{1}{r}=\int_{0}^{\pi / 2} \frac{2}{\pi} \cos \theta d \theta=\frac{2}{\pi}[\sin \theta]_{0}^{\pi / 2}=\frac{2}{\pi}
$$

To the 3-D case, $p(\theta)_{3 D}=\cos \theta$

$$
\text { and mean } \begin{aligned}
\frac{t}{2}=\int_{0}^{4 / 2} \cos ^{2} \theta d \theta & =\left[\frac{\theta}{2}+\frac{2 i 2 \theta}{4}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{4}
\end{aligned}
$$

apparent prosadox: suppose we choose θ and ψ independuth from unfolu distritution, then $p(\theta)$ and $p(\psi)$ are both constants. But, then the ressulturg points are notwaifform one the sphere;" they are concentrated mar the pole

$$
28 \cdot(8 \phi,+605)
$$

Txy

$$
\begin{aligned}
& \beta=100 \\
& 4 \quad \gamma=2
\end{aligned} \longleftrightarrow \begin{aligned}
& \beta=100 \\
& \gamma=1
\end{aligned}>\begin{aligned}
& \beta=50 \\
& \gamma=1
\end{aligned}
$$

$5 / 8 / 64$
64793.0112 .0121

Ditnot avod blow up with zeso mictial constition imsoma. Gpparently need to decreape Bunge Rutra step size to handle sueh large values of 3 .
The initention was to begnijwith large β and compare the effects of $\left\{\begin{array}{l}\text { odecrosung } B \\ \theta \text { increasing }\end{array}\right.$

Con use sualle stepsize. Howens, may be unoul to rephrese problem so the we couprase prillop with resulto we alreedy hove

Mayne should use foctors smallor thon 10. Prochaps 2 or 4 , once cuell certered.

$$
\begin{aligned}
& 1510_{3}+\frac{1}{2}+8+8+(1) \frac{1}{2}
\end{aligned}
$$

08 queso ow Cas' 3 s.
$5 / 1164$ Perspectives on Knids of Problems: MathaN Nodels \& Nemophopiat
A. General Model of Nouron with differen smplificatons For different purposea.
(1) Geonctric simplifications
(a) axou
(b) equivalu cylvider to clensof dendritu trees
(c) specific types of dublritic tres.
(2) Simplificatóns of Menbrone Kinetios.
(a) possive membrome
(c) step cherges in parameters
(d) time varying resistances con $v \& t$.
B. Estinition of model peraneter from intrell. deta ((un suglecells).
(1) Geometre paranders
(2) Membinare porameters
C. Liter netation of Eytracellulor Poteutials
(1) goonetry a recordiog conditions for a suigle cell
(2) "" " " " " group of cells
(5) questions of asynchrory for group of cells.
D. Supat Oupus for Snigle Cell
(1) Turesciol Kinetics
(2) Patterns of symaptic astivity
E. atractions witing group of Cells
F. futuactions letween diferent groupa of cells

$$
\begin{aligned}
d A & =(2 \pi R \cos \varphi) R d \varphi \\
& =2 \pi R^{2} \cos \varphi d \varphi \\
& =2 \pi R^{2} d(2 \sin \varphi)
\end{aligned}
$$

unfornu A noons mijforn ovid
$5 / 18 / 64$ Sove tolk to comprite group on 5/13/64.
Also worted on noplem of havniz oreitations equally probakle whenever thay are supposed to be. Roughed this on 5/14/64 out presentot notes to Betly Garker on 5/15/64. Howstarer, there was an ersos. Here now cornectir

Q is latitude
θ is longitude

$$
\begin{aligned}
& x=R \cos \varphi \cos \theta \\
& y=R \cos \varphi \sin \theta \\
& z=R \sin \varphi
\end{aligned}
$$

These are they oymbols used in progrom.
Before 5/15/64, the orignial program chose Q from a uniforn dist from O to 2π
θ ar \quad to π
Also, one of dangliter diriction cosines wos chosen from a wnoporm distrituilión.
Reoised program
let RAND be sardom undor foen oto 1.

$$
\text { Let } \theta=2 \cdot * \pi * \text { RAND }
$$

Qro sinc uniform

$$
\operatorname{let} \sin \varphi=2 \cdot * \operatorname{RAND}-1
$$

for nth wode

$$
\begin{aligned}
& \alpha_{n}=\frac{x_{n}-x_{p}}{R_{n}} \\
& \beta_{n}=\frac{y_{n}-y_{p}}{R_{n}} \\
& \gamma_{n}=\frac{z_{n}-z_{p}}{R_{n}}
\end{aligned}
$$

* phere of rodios R_{d}

Suppose pareu borough hos direction cozies $\alpha p, \beta p$ and γ_{p}
For a gioen daenglites, use up two degrees of freedom to get O_{d} and Rd which define a circular locus af squally proboble locations for doughty Mode. Let positions in this circle be represented by the angle ψ.

$$
\text { Let } \psi=\pi * R A N D
$$

mote, for getting directronal cosine, need only consider Y/fom o to π.
given Yp_{p} calculate Y_{d}
Cores answer is from spherical trig.

$$
\begin{aligned}
\cos \omega_{d} & =\cos \omega_{p} \cos \theta_{d}+\sin \omega_{p} \sin \theta_{d} \cos \psi \\
\gamma_{d} & =\gamma_{p} \cos \theta_{d}+\sin \omega_{p} \sin \theta_{d} \cos (\pi+\operatorname{RAND}) \\
& \text { where } \sin \omega_{p}=+\sqrt{1-\left(\partial_{p}\right)^{2}}
\end{aligned}
$$

Alternatively, same thin could he done for edsel to αp or β od rel to βp, fie then
the other two direction cosines are defied

$$
\begin{aligned}
& a=\frac{1}{x} 1+\left(\frac{\gamma_{p}}{\beta_{p}}\right)^{2} \\
& b=-2 \gamma_{p}(\cos \theta d-\alpha p \alpha d) / \beta_{p}^{2} \\
& \left.c=\alpha_{d}\right)^{2}+\left(\frac{1}{\beta_{p}}\right)^{2}\left(\cos \theta \mid-\alpha p \alpha_{d}\right)^{2}
\end{aligned}
$$

Simpler if multiply each berm by $(\beta p)^{2}$

The two equations are：

$$
\begin{aligned}
& \alpha_{p} \alpha_{d}+\beta_{p} \beta_{d}+\gamma_{p} \gamma d=\cos \theta_{d} \\
& \alpha d^{2}+\beta d^{2}+\gamma_{d} d^{2}=1
\end{aligned}
$$

Suppose Nd and $_{\text {Od }}$ hove been determined
Then solve 1 st oqu for β 就 in terms of γd and subs mi dent． is．

$$
\begin{aligned}
& \beta_{d}=\frac{1}{\beta_{p}\left(\cos \theta d-\alpha_{p} \gamma_{d}-\gamma_{p} \gamma_{d}\right)} \\
& \gamma_{d}^{2}=1-\alpha_{d}{ }^{2}-\beta_{d}^{2} \\
&=1-\alpha_{d}^{2}-\left(\frac{1}{\beta_{p}}\right)^{2}\left(\left(\cos \theta_{d}-\alpha_{p} \alpha_{d}\right)^{2}-2() \gamma_{p} \gamma_{d}\right. \\
&\left.+\gamma_{p}^{2} \gamma_{d}^{2}\right) \\
& \gamma_{d}^{2}\left(1+\frac{\gamma_{p}^{2}}{\beta_{p}^{2}}\right)=2 \gamma_{k}\left(\cos \theta d-\alpha_{p} \alpha_{1}\right) \gamma_{d}+\alpha_{d} d^{2}-1+\left(\frac{1}{\beta_{p}}\right)^{2}\left(\cos \sigma_{d}-\alpha_{p} \alpha d\right)^{2}
\end{aligned}
$$

Quad formula．

$$
\text { musty } \beta_{p^{2}}^{2}
$$

$$
\begin{aligned}
& =\frac{\gamma_{p}(\cos \theta-\alpha p \alpha \alpha)}{1-\alpha p^{2}} \pm \frac{\beta p \sqrt{\left(1-\alpha p^{2}\right)\left(1-\alpha \alpha^{2}\right)-(\cos \theta-\alpha p \alpha \alpha)^{2}}}{1-\alpha p^{2}}
\end{aligned}
$$

5/20/64 Stock taknig.
(1) Hove corrected raudoumes for Betty Garber's prozion
(2) Noticed enor in WXRGIIC which corfused JMP +10 A one point giring peculiar ouprin for indoritual tofals'o This skould be fixed! Then, shaid get rum for two group of waghe for one overall group.
(3) Should do giont Ve sums es notd on p. 29
(4) Waid to urite up kiñetic nuodel now
(5) Mur fuish off Aithen pipins soon.
(6) Mut discurs lote Mitial क othercells of Gordon's secords se? Sinulation
c. P. 93 of Book3
tu 64991.0647
peak $\varepsilon \approx 450$ with $g \approx 10$ leterpeak $f=50$ with ε donento that 12

$$
\begin{aligned}
& \$ 464793.0112+.0121 \\
& \text { PACT }=500 \text {. } \\
& \text { RBS } Q=1 \text {. } \\
& \text { RBFR }=80 . \\
& Q A=15 \text {, } \\
& \text { ROUTB }=20 \text {. } \\
& \text { ROUTC }=5 . \\
& Q B=40^{\circ} . \\
& A \text { APOS }=-1 \therefore(\beta=-0.1)
\end{aligned}
$$

$5 / 2164$
Kinetics of uniform mentrone pot th

$$
\tau \dot{V}=I_{m} R_{m}-V+\varepsilon\left(V_{\epsilon}-V\right)-g\left(V-V_{j}\right)
$$

chere

$$
\begin{aligned}
& V=V_{m}-E_{r}=V_{i}-V_{e}-E_{r} \\
& V_{E}=E_{E}-E_{r} \\
& V_{j}=E_{j}-E_{r}
\end{aligned}
$$

divide turuly $V_{\epsilon}+$ let $y=\frac{V_{\epsilon}}{V_{e}}$ and $\beta=\frac{V_{j}}{V_{\epsilon}}$
Then (1) $\tau \dot{y}=\psi-y+\varepsilon(1-y)-g(y-\beta)$ aud currant binetic modd has
(2) $r^{2} \dot{\varepsilon}=k_{1} y^{2}+k_{2} y^{4}-\left(k_{3}+k_{4} g\right) \varepsilon$
(3) $r \dot{g}=k_{5}\left(k_{3}+k_{4} g\right) \varepsilon-k_{6} g$

WxR793C
where in $5 / 6 / 64$ verswon of $W \times 193 C+94 C$

$$
\begin{aligned}
& \text { Ecosesp to B BRACT } \\
& \text { of }_{1_{1}=\text { RACT }} \text { "RBC CPENCHA } \\
& k_{R_{1}}=R A C T * R B S Q \quad 500 \text {. } \\
& \begin{array}{ll}
k_{2}=R A C T * R B F R & 4 \times 10^{4} \\
k_{3}=R O U T B
\end{array} \\
& k_{3}=\text { ROUTB } \\
& k_{4}=Q B / Q A \\
& B_{5}=Q A / R A C T \\
& R_{6}=\text { ROUTC } \\
& 20667 \quad \frac{40}{15} \\
& \begin{array}{ll}
.03 & \frac{15}{500} \\
5 . &
\end{array}
\end{aligned}
$$

But then inodel dectectonns is mitabelutely passine t not abselutety linear

Consider programming for a study of these kinetic Should print $y, \varepsilon, g, 1+\varepsilon+g$
for (A) action potential
(B) for voltage clamp
(C) for sural constant current
(d) examine late steady state with exaume ale stead sa consider
voltage clamp tr eon shocks
also anode rear
Proflema become apparent as one tries to satisfy all these sequireserey with a sungle simplified, model. But several points of intens s are suggested..
(1) If want purely passive response to anodal shim, then mist have k_{1} and k_{2} be zero for $y<0$. Con do with theovisile far, if desired. Mower, Them
so not get anodal lueale response. Ht H apparently so not get anodal livable response. Ht Ht apparently do this by surnignis x auth below rest values. This I canst do withe g which is zero at rest. A could hove a kory sural ni crease of ε to mimic this.
(2) If wine wish the equations to predict stistile resp. to depol. voltage clomp, there sons

- Rrom Eq(1), for $y=0$

$$
\begin{aligned}
\psi & =(1+\varepsilon+g) y-\varepsilon-\beta g \\
& =(1+\varepsilon+g) y-(\varepsilon-0.1 g)
\end{aligned}
$$

$\psi=a \quad y=\frac{\varepsilon-0.1 g}{1+\varepsilon+g}$ where ε ig are fian of stady y :

Presundely $\frac{\varepsilon-0.19}{1+\varepsilon+g}$ becomes midet of yf for $y \gg y_{h}$. seep.41

Tole a problem in matchon HAH concep of late g_{k} dominatur onen late gNa, liv moyle 3.456 of HtH poper (2) evise not to assume. Ina mokes no contritution. Lufact, it sears to me that the late s/is). currenst jottage charoctoristéc night well bonefit ly abtesuatrue iutapretations.
is. if E is not noglogitle, ther The roference point for cloord conductonce is not E_{j} bin a liniar comblitation of $E_{j}, E_{2}+E_{\epsilon}$.
To me, there hes alwayg seomed (seevoltage clamp note \& manycript re Zauh, tuonts Nolsor I: Vplot houns same slope as peahplot, indwir an eytrap uiteropt near Eli. The niption that all Tlese porits are related to E; boy dfferend dubrd conluctonces (Hogiwana ifaito) ahwayp seened a little odd. This proplen iscoorth lookiog into in present contept.

- Hery he necersury to couvider eq (4) as an
alternatuie to so (3) altermoturie to oq (3)
(4) $\tau \dot{g}=k_{7} \underset{\sim}{k_{7}}+k_{8} g y-k_{6} g \mid$

This pomits st.st. I to remain
raiso voith sterdh of over rusd voith stading ion
apton Elig follon bock pom
a peok a peok

$$
\begin{aligned}
& k_{7} \simeq k_{3} k_{5} \simeq 0.6 \\
& k_{8} \simeq k_{4} k_{5}(\text { perk } \varepsilon) \simeq(.08)(450) \simeq 36
\end{aligned}
$$

Now, let us compore the late stordystete of These two loses.
Tor equations (2) \&(3) when $\dot{\varepsilon}=0=\dot{j}$
We hove $\begin{aligned} \frac{k_{6}}{k_{5}} g=\left(k_{3}+k_{4} y\right) \varepsilon & =k_{1} y^{2}+k_{2} y^{4} \\ & =R(y)\end{aligned}$
$\begin{array}{ll}g=\frac{R_{5}}{R_{6} R(y)} \\ \text { and } \quad \varepsilon & =\frac{R}{R_{3}+R_{4} g}=\frac{R}{R_{3}+\frac{k_{4} k_{5}}{R_{6}} R}\end{array}$

$$
\begin{aligned}
& k 5 / k_{6}=\frac{.03}{5}=.006 \\
& q=\frac{R}{20+2.67 \mathrm{~g}}
\end{aligned}
$$

$$
\begin{array}{c|c}
y=0.5 \\
R=125+2500=2625 & R \simeq 4=1 \\
\hline 500 y^{2}+4 \times 10^{4} y^{4} & 39
\end{array}
$$

702 En 283

$$
\begin{aligned}
& g=15.7 \\
& \varepsilon=\frac{2625}{20+41.9}=42.5 \\
& \begin{aligned}
\frac{\varepsilon-0.19}{1+\varepsilon+y} & =\frac{42.5-1.57}{59.2} \\
& \approx \frac{40.9}{59.2}=0.69
\end{aligned} \\
& \begin{aligned}
\Psi & =(0.5)(59.2)-40.9 \\
& =29.6-40.9 \\
& =-11.3
\end{aligned}
\end{aligned}
$$

forks like Es is too large to fit desired coustranits

$$
\begin{array}{r}
y=2.4 \times 10^{2}=240 \\
\varepsilon=\frac{4 \times 10^{4}}{20+640}=58.8 \\
\frac{\varepsilon-0.1 g}{1+\varepsilon+y}=\frac{58.8-24}{299.8} \\
=\frac{34.8}{300}=0.116 \\
\psi \simeq 300-0.116 \simeq 300
\end{array}
$$

Tools like E is too small to fit desired constants

Aus her prosibulity's
(5) $r \dot{g}=k_{5}\left(k_{3}+k_{4} g\right) \varepsilon+k_{8} g y-k_{6} g$

Then forstst.

$$
g\left(\frac{k_{6}-k_{8} y}{k_{5}}\right)=\left(k_{3}+k_{4} g\right) \varepsilon=R(y)
$$

Then $g=\left(\frac{k_{5}}{R_{6}-28 y}\right) R$

$$
\varepsilon=\frac{R}{k_{3}+k_{4} g}
$$

Binot anuch lieter

For equatioses (2) (4) Whon $\dot{\varepsilon}=0=\dot{g}$
from (4) $\quad \varepsilon=\frac{1}{k_{7}}\left(k_{6}\right.$ 童-k8 $\left.y\right) g$
(hom (2) $k_{1} y^{2}+k_{2} y^{4}=\left(k_{3}+k_{4} g\right)\left(\frac{k_{6}-k_{8} y}{k_{7}}\right) g$

Tronble here lecause $k_{8} y>k_{6}$ implies Enegative abord this traulle lymaniog $k_{6}=10$ ant $k_{8}=5$
appoy $g^{2}+7.5 g=80=0 \quad$ opproy $g^{2}+7.5 g-1800=0$
approy $(y+13.3)(y-6)=0$

$$
y \simeq 6
$$

$$
2 \approx 109
$$

$$
\begin{gathered}
(y+46.5)(g-39)=0 \\
2 \approx 39 \\
\varepsilon \approx 109
\end{gathered}
$$

$$
\begin{aligned}
& R=\frac{k_{3}}{k_{7}}\left(k_{6}-k_{8} y\right) g+\frac{k_{4}}{k_{7}}\left(k_{6}-k_{8} y\right) g^{2} \\
& g^{2}+\frac{k_{3}}{k_{4}} g-\frac{k_{7}}{k_{4}} \frac{R}{\left(k_{6}-k_{8} y\right)}=0 \\
& g^{2}+(7.5) g-\frac{(0.225)}{(5-36 y)} R=0 \\
& y=0.5 \\
& y=1 \\
& f^{2}+7.5 f-\frac{(0.225)(2625)}{\left(\frac{18-5)}{7.5}\right.}=0 \\
& \partial^{2}+7.5 g-\frac{(0.225) \times 4 \times 10^{4}}{31}=0
\end{aligned}
$$

If oversimply require (see poze opponte p.37)

$$
\left\{\begin{aligned}
1+\varepsilon+g & =K \quad \text { const may slope } \\
\varepsilon-0.1 g & =(0.2)(1+\varepsilon+g)=0.2 K
\end{aligned}\right.
$$

Then consolne $\quad \varepsilon+g=k-1$

$$
\text { toget } \begin{aligned}
& \varepsilon-0.1 g=0.2 k \\
& \varepsilon \simeq 0.73 K-0.91 \\
& \varepsilon \simeq 0.273 K-0.091
\end{aligned}
$$

 Howeor, moregenerally, $\varepsilon+$ gat.st are furoof y

$$
\begin{aligned}
& \text { and } \frac{d \psi}{d y}=(1+\varepsilon+g)+\left(\frac{d \varepsilon}{d y}+\frac{d g}{d y}\right) y-\frac{d \varepsilon}{d y}-\beta \frac{d q}{d y} \\
& =1+\varepsilon+g+(y-1) \frac{d \varepsilon}{d y}+\left(y-\beta \frac{d \eta}{d y}\right. \\
& \approx K \text { for } y>y_{n} \\
& \text { aro } 1+\varepsilon+g \approx 5\left((+\beta g) \text { or } \varepsilon=\frac{1+(1-5 \beta) g}{4}\right. \\
& \therefore K \approx 5(\varepsilon+\beta g) \&(y-1) \frac{d \varepsilon}{d y}+(y-\beta) \frac{d g}{d y} \\
& \approx 1.25+1.075 y+[(y-1)(0.375)+(y-3) \cdot] \frac{d f}{d y} \\
& \approx 1.25+1.375 g+(2 y-0.275) \frac{d y}{d y}
\end{aligned}
$$

Moy resolvely notiry that \longrightarrow Thirilete" cune does not corrers t_{0} atrue stist. cur more nearly to with my model.
fre y from 0.6 to 1.5 iange would like

$$
\frac{d f}{d y}(y=0,1)+\frac{d \varepsilon}{d y}(y-1) \simeq 99-\varepsilon-g
$$

Consider

$$
g y+0.1 y+\varepsilon y-\varepsilon-99 y=\text { const. }
$$

diffiwith sempec to y grues abone o:
$5 / 22 / 64$
The H \& Hopprioach was to answer late G due to GK and match G_{k} Sst as a fan of V to the data.

Were, theattannt hos been to see if could get neosquable volt, clamp $5 x-5 /$ an the assumption that both ε of contribute. But firstatlempt hos not cursed ont.
for Ht H data,

$$
\begin{aligned}
& K \approx 100 \\
& y_{h} \approx 0.25 \\
& \psi_{\text {viand }} \approx-25 \\
& \varepsilon-0.1 g=25
\end{aligned}
$$

$$
\text { waved wanly that } \quad \psi_{\text {marat }} \approx-25
$$

Note st.st. \& of stist. g would he fen of y

$$
\approx 0.6
$$

for any given $y_{1}>$ we con only say that $\psi_{1} \approx 100\left(y_{1}-25\right)$

$$
\begin{array}{ll}
y_{1}=\frac{\psi_{1}}{100}+.25 & \text { Thus } y_{1}=100\left(y_{1}-.25\right) \approx\left(1+\varepsilon_{1}+g_{1}\right) y_{1}-\left(\varepsilon_{1}-0.1 y_{1}\right) \\
& \text { and } \psi_{2}=100\left(y_{2}-.25\right) \simeq\left(1+\varepsilon_{2}+g_{2}\right) y_{2}-\left(\varepsilon_{2}-0.1 g_{2}\right)
\end{array}
$$

At is mot the in general, that $1+\varepsilon+0=100$ and that $\varepsilon-0.1 g=25$ y it were, $\varepsilon+g$ womedhere food values as in the isporshof of op. 41
Buifor $y_{1}>0.6$, we soy that $\frac{d \psi}{d y} \simeq 100$

$$
\frac{d \psi}{d y}=1+\varepsilon+g+(y-1) \frac{d \varepsilon}{d y}+(y+0.1) \frac{d g}{d y} \simeq 100
$$

Tor very rough approx, arouse $\frac{d \varepsilon}{d y}$ negligitle
then $(y+0.1) \frac{d g}{d y}+y \simeq 100-1-\varepsilon=99-\varepsilon$

$$
\text { 7gels omp. } 439 \text { of } H, H \neq K
$$

Theor points are labebd os having been oftamised ot different pounts nis twieg and teyd refers to a "stbadey stale"
sangurg fron 6 wese to 40 mese

Afall were tohen at same tine, soy 100 ol 15 sec ,
The top bend would go shaighter to an mitercapt । and the bottom pronts would shift up.

572464
Releuton conclusion this afternoon is that not likely to getstist. with mn ample model. Aftrall in At Atpoper five, their relation which would conan roughing to my gus y sought, is

$$
\frac{g_{K_{\infty}}}{g_{K_{\text {max }}}}=\left(m_{\infty}\right)^{4}=\binom{\alpha_{n}}{\alpha_{n}+\beta_{n}}^{4}
$$

$$
\text { where } \alpha_{n}=\frac{0.01(v+10)}{\exp (0.1(v+10))-1}
$$

$$
\text { and } \beta=0.125 \exp (V / 80)
$$

$$
(p .510+511 \text { of popes }(5)
$$

Homer, note That $H \& H$ do not fit a true experimental steady stall them selves;
They seen to use a peak K curasent, the late cordustquce curve would fool differ net it all ports were obtained Fir the same the value in the voltage clamping transients r seepptpoze

- allompit o/merimes poses was Too severe.

The suspicion f wish to check is that peak Kcurrent corresp to sergnifiouth nonzero E and tho, perkops, the value of $\frac{\varepsilon-0.1 g}{1+\varepsilon+g}$ is simitiler for all $V>V_{h}$
as this peale twine.

$$
5 / 25 / 64-5 / 27 / 64
$$

Wrote WXR $75 / \mathrm{C}$
with the intentern of chechrieny kinetics against the experim entol contrailits at firsit, smiply psint ontolues as they are compuited. Letarporityale plot.

Prunt $K T, T K, C, P, V, E, Q, G$

$$
\begin{aligned}
& \text { where } C=\text { curvent } a \rho \psi=\frac{I m \text { man }}{E C-E z_{2}} \\
& P=\text { passive } \frac{V W_{M}-E_{1}}{E_{C}-E_{2}} \\
& V=\text { inon-parsure } \\
& E=\varepsilon \\
& Q=g \\
& G=l_{0}+\varepsilon+g
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Hewitrib) } \\
& K H V S D=\left\{\begin{array}{l}
1 \text { meana suppriders neg } V \text { coatritution to } \dot{E} \\
0 \\
0
\end{array}\right. \\
& \text { KLAMP }=\left\{\begin{array}{l}
+1 \text { meous voltoge clamp } \\
0 \text { meors zero cevrent } \\
-1 \text { weons nou-zerocurrent clomp }
\end{array}\right.
\end{aligned}
$$

rateconitouts $R(K)$ for $K=1,7$
all tine eyprestedas $T=t / \varepsilon \quad\left(i x \cdot D T, T K, D E L T, \frac{\partial V}{\partial T}=\varepsilon V\right.$

$$
\begin{aligned}
& D X=E G R O-E L O S S=R(1)+A S Q+R(2)+A F R-(R(3)+R(())+Y) * X \\
& D Y=Q G R O-Q L 885=R(5) * E L \text { OSS }+R(T) * A * Y-R(6) * Y \\
& 14 \pi 40 \cdot D A=C-A+X *(1 .-A)-Y *\left(A t_{0} 1\right) \\
& D z=C-Z \text { conect/5/28/64 } \\
& \operatorname{men}=1\left[C=V-E *\left(1_{0}-V\right)+Q *\left(V+t_{0}\right)\right.
\end{aligned}
$$

$5 / 28 / 64$
first test of WXR 751 C
results encourignoy: conglo essor in P
Su these tests peek ε was $\approx 640\}$ foctor of 10
wheas in $H t H$, factor is less thon 3
Their pereg giva corresp \approx to $\begin{aligned} & \varepsilon=300 \\ & A=120\end{aligned}$

$$
y=120
$$

Thisis besel on goat ≈ 0.1 for their curves.
pordongor a equitso pot, Their $q_{n a s} \approx 40 \longrightarrow \varepsilon \approx 400$

$$
g_{k} \approx 20 \longrightarrow g \approx 200
$$

Naftest has two Seriés
$R_{1} \quad R_{2} \quad R_{3}$
$\begin{array}{cccccccc} & R_{1} & R_{2} & R_{3} & R_{4} & R_{5} & R_{6} & R_{7} \\ \text { Estecrien } & 500, & 4 \times 10^{4} & 20, & 2.7 & .03 & 5 . & 0_{0}\end{array}$
Luteeries 11 4 11 3. 11 5. 2.5
6/2/64 2ni Sesios went too for ni thisdiriction. Q Hlew up >500

Iut Seriés

$$
\begin{aligned}
& \begin{array}{llllll}
.7 & .03 & -44 . & 179 & 11.3 \\
& & & 227 & 11.2 & 287
\end{array} \\
& \begin{array}{lll}
.5 \quad .05-30 . & 35.3^{68} 11.8^{5.9} 67.7
\end{array} \\
& \begin{array}{lll}
.3 \quad .09 & -8.8 \underbrace{13.9}_{-1.97} \quad 8.11 & 107 \\
8.5
\end{array} \\
& \text { note reverly equal }
\end{aligned}
$$

63164
Andysis of $6 / 2 / 64$ nemiltow Th WXR 751 C
During Spote
Is Series peake $\varepsilon \simeq 650$
with $y=15$
atool $\begin{aligned} & \text { otannecki }\end{aligned}$
2ud Series peok $\mathcal{E} \simeq 350$
peak $g \simeq 87$
woth $f=20$
ot peak of V
Voltage clampinig
istseries

$$
\begin{aligned}
& \text { V TK } \\
& \text { peak }=.03-43.4 \quad \sum_{523} \quad g_{7.9} \\
& \begin{array}{lllll}
\text { final }=.9 & 153 & 60 & 158
\end{array} \\
& \begin{array}{llllll}
.78 & \left.\begin{array}{llll}
\text { pede } & .05 & -7 / .2 & 257 \\
\text { find } & 31 & 56 & 6.5 \\
\text { fid } & & 58
\end{array}\right)
\end{array} \\
& \begin{array}{lllllll}
.5 & .08 & -42.8 & 90 & 30 & & 30
\end{array} \quad 16 \\
& \begin{array}{llll}
.3 & .15 & -10.8 & 16.3 \\
\hline-8.8)^{-9} & 14
\end{array}
\end{aligned}
$$

becure R_{7} tands to enhance g moort \sum
when V is large.
\therefore Nar bolues will he $R_{6}=10$. (twiceprevion)
requising

$$
\begin{aligned}
& R_{5}=0.1 \\
& R_{2}=100
\end{aligned}
$$

$$
R_{3}=100
$$

Try $R_{4}=\{1 \cdot$ and 100 .
Leove R_{1} \& R z undlanged! $R_{7}=0$
Nobethet $R_{4}=100$ holds Ess to $\frac{\text { dss }}{1+g_{s s}}<1$

late steady stale.

Problem is to decrease E belong for small $v \varnothing g$ Cero second series got to to bins.
:ARr is really not helpful. Eliminate R_{7}
Aim to jiggle rate constants to reduce $\varepsilon+$ nicresar in spore ant in voltage clomp.

- Hancrese R_{6} heconse decays too slovenly

$$
\begin{aligned}
& f_{s s}=\frac{R_{5}}{R_{6}}\left(R_{1} V^{2}+R_{2} V^{4}\right) \\
& \varepsilon_{s s}=\frac{R_{1} V^{2}+R_{2} V^{4}}{R_{3}+R_{4} g_{S S}}=\frac{\left(R_{6} / R_{5}\right) g_{s s}}{R_{3}+R_{4} g_{s s}}
\end{aligned}
$$

\therefore for forsylorge, $\varepsilon_{s s} \longrightarrow \frac{R_{6}}{R_{4} R_{5}}$
for Hiss very small, $\varepsilon_{s s} \longrightarrow \frac{R_{6}}{R_{3} R_{5}} g_{s s}$
Inordenthat $\varepsilon_{s s}<g_{s s}$ for small $g_{s s}$, need $\left(\frac{R_{6}}{R_{3} R_{5}} \approx 1\right.$
for $V=1, f_{s s}=\frac{R_{5}}{R_{6}}\left(R_{1}+R_{12}\right) \approx 4 \times 10^{4}\left(\frac{R_{5}}{R_{6}}\right)$
: if wonigss around 400 , weed $\frac{R_{5}}{R_{6}} \approx 10^{-2}$
\therefore meed $R_{3} \approx 10^{2}$ to satisfy.
R4 has some freedom: it will offer spike slopeof Css wa V

In thidxris. TKz.04, $P_{3}=100$ get $\approx 300(1-.7) \approx 90$ $c \approx 0.7-(0.3) 90) \approx-27$
for secontsingos ε^{*}

Provided the the trousients are not ruined, previons poges show that Ess can be held down acconbing to

$$
\varepsilon_{s s}=\frac{\left(\frac{R_{6}}{R_{3} R_{s}}\right) g_{S S}}{1+\frac{R_{4}}{R_{3}} g_{s s}}
$$

in puticular, if $R_{3}=R_{4}=\frac{R_{6}}{R_{5}}, E_{s s}<1$ anore graerally, whatever R_{4} mog bee, if $R_{3}=\frac{R_{6}}{R_{5}}, \varepsilon_{S s}<g_{s s}$

Whay pessilly meed to dow evergthniz down.
If we dexire Ess $<\alpha$ gss
then voquare $\frac{R_{6}}{R_{3} R_{5}}=\alpha$
look at C for $V=7$ \& see if con estimate peak C.
istepprox woud be for $g=0$ \& gressed $T K \quad r^{2}=.49$

$$
\begin{aligned}
& \varepsilon^{*} \approx(\tau \dot{\varepsilon})(T K) \approx(T K)\left(10^{4}\right) \quad \text { for } T K=003 \text {, ent } \varepsilon \approx 300
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.g. } \approx 300(1-.2) \approx 240 \\
& \text { fapiostserico. } C \approx V \varepsilon^{*}(1-v) \approx 0.7-(0.3) \varepsilon^{*} \approx-72
\end{aligned}
$$

$$
\frac{1}{5} \cdot-1
$$

$$
\begin{aligned}
& \text { 6/4/64-6/5/64 Series } 3,4,5,6,7,8 \text { of } 49 \\
& \text { were sum and combased }
\end{aligned}
$$ were rum and compared, whisij aso 142

Geverd: In (2) spike folla foster then rise (ivublout) In (3) , (6), (8) foll very smilorto rise (oud ruledout) th (4) overquenched (iorubdont)

This boves
(1),(5) (4) all look "physiological" because rise is fort \& foll is slowerthonerse
Sevies (1) showz more rombed top, probobly lecouse of amallest R_{3} and R_{5} gove smelles ratio o/fpede to pock
Note that longent natio of 9 peech to Epech

$$
\begin{aligned}
\text { series (3) win ratio } & >1 / 3 \\
\text { white series (8) } & =1 / 3 \\
\text { A } \operatorname{series}(6) & \cong 1 / 3
\end{aligned}
$$

all these tend to foll too fost.
Coneporngy (1), (5) +(7), pertops (5) is pretties, fut 7×1
Mote the (1) conspouls to the extracalluler cales done
earliei with WXR 793 C earlei with WXR.793C
(7) issumiber, lut R_{6} is doubled, R_{3} is 2.5 times
\rightarrow Mis seans to gove more vedistic of decoy

Tor extracellalor study \& such opplications, need to consoler differences of these cases with regard to ayen-sonna block of synaptic Threshold.
For near therhold conditions, there may be a significant difference mi the steady os which would nicrese threshold.
ie. just subthreshold, one would reach aysteo dy state where $\frac{d \varepsilon}{d t}=0=\frac{d g}{d t}=0=\frac{d V}{d t}$
Then gas $=\frac{R_{5}}{R_{6}}\left(R_{1} V^{2}+R_{2} V^{4}\right)$
also $\quad \sum_{S S}=\frac{R_{1} v^{2}+R_{2} \nu^{4}}{R_{3}+R_{4} l_{S S}}=\frac{\left(R_{6} / R_{5}\right) g_{5 S}}{R_{3} T R_{4} R_{S S}}$

Easiest trick to raise soma threshold is to pit a factor such as 0.8 in front of \mathcal{C} in the expression for V at the soma
An $A B$ break will occur. When the dendritic trunks warly fail to fire so that the soma transient starts to decay before the trunks enter local response and take off.

$6 / 6 / 64$
Thought dow simulating A B brede + Hook

a ponitle hogher threshoed parsive soma with actrie deubrites conld gove $A, A B$
in hittoc

Or possuly, souna need not he frosone, provided that it has a lasigher threshoed such that dendrits firi lopore sorna, tograe AB break

This conld be marnaged eithes by kamiv hopher soma threrloded,
or prhops by denbitie facilitation

$6 / 10 / 64-8 / 12 / 64$
Major internuption of research
A. Oneweck in Teyes

Br oneweck here taknog cored loose eurbo othinikoy

C. $3^{1 / 2}$ wehs at Bethan Beoch
D. Ore veeks pricho up loose ends, seviewring aero goblertreess thiogspmassan etz. and cars.
E. ove medh to complete Coutersa poper which wos dittord o seit off $8 / 11164$.
Toloy lookn oner old looze notes to see what need to go in here talso to ossign pronities for comnig mouth.
(1) Computations needed /or poper wilt Gordor
(2) Rovgh ow prper on inpuike nodel

- clech inso quentions raised W Dick Ti thltugh
(see next page for notes from 6/18/64)
(3) AB break 1.51
(4) Roperbacts to p. 34 qp. 5 \%p. 30
$8 / 14 / 64$ put prictwes up on office wall

- Che
(u) in)

8/12/64 cory of notes doted 6/18/64 otter shouniz
Foin Fifthugh the results of WXR751 (seep. 49)
Dick had two suggestions:
(1) Comprise Es ant $g_{s s}$ for small V, and then compute and plot I w V Curve to see if there are three singular points, as implied My my crossover' point away form origin.

If so, want to investigate stability propertios of the thirst point. At would be awkward If this were stable, becouse then would hove two stable' resting potentials.
However, Dick soy p it could be unstable in a special way which he has not mit before, monelys,

name a $(+1)$ point where all arrows are directed awol
seep.(11.6) of Aotzttugh's anuscropt

If A sally hove such a point, he would he quite interested
also,plot $\left.\right|^{g} v$
for ε constant at st.st. value, to get nearest approof to BVPruodel.

Lutasects with supfece, $\dot{g}=0$

Roferbodr to poge 35 of this book, where $y=\frac{V_{m}-E_{2}}{E_{E}-E_{r}}$
Celso, set $\psi=0$ and $\beta=-0.1$
Then

$$
\begin{aligned}
& r \dot{y}=-y+\varepsilon(1-y)-g(y+.1) \\
& r \dot{\varepsilon}=k_{1} y^{2}+k_{2} y^{4}-\left(k_{3}+k_{4} g\right) \varepsilon \\
& r \dot{g}=k_{5}\left(k_{3}+k_{4} g\right) \varepsilon-k_{6} g
\end{aligned}
$$

$$
\begin{aligned}
& \dot{i}=0 \text { gives } \\
& \left(k_{3}+k_{2} y\right) \varepsilon=k_{1} y^{2}+k_{2} y^{4}
\end{aligned}
$$

for $\dot{g}=0$, have $k_{5}\left(k_{3}+k_{4} g\right) \varepsilon=k_{6} g$;or $g=\frac{k_{5}}{k_{6}}\left(k_{1} y^{2}+k_{2} y^{4}\right)$
for $\dot{y}=0$, have $-y+\left(\frac{\left(k_{1} y^{2}+k_{2} y^{4}\right.}{k_{3}+k_{4} g}\right)(1-y)-g(y+.1)=0$
Ez

$$
\begin{aligned}
& 3(p+1+a)-64+p y=3=
\end{aligned}
$$

8/22/64 Sot Donothy to rum off old dittos
of Sphenical Neuron Field poper \& preparation to completion of sance.

8/24/64 Disaysed late potatial of Offactory Bulb fietd potentials with Gordor fodor. (see next proge We had plotted The Theoreticel iso contowrs (vs depolh t time) on 7 riday. Now, analyziy to see what orgle to he cluedret on rext.
The ones plottot were 64791.0666 passive dendite hot kinatio and 64791.0669 actine dendistes (coolkinetica
Question was raised whether secoudary dendites should betreated separatety beconse of
(a) They contredente dofferenthy to extracelluler fot bectonse λ vo desph is differen jever forantidromic. This nudy sureor ofter positivity, even for actcire denbictos.
(b) prossitility of difperew synaystic actuvity

I
The resting state of plaque could be like a low restatice electrical synapse.

The hatched membrane hes high conductance eg. high K^{+}permeability from one call to the other, in both directions

For mitral call dep of to hove depot. effete on gromile cell, es. K t would flow from m. to g .

III
Sufficient summation or regeneration of granule cell depolonization causes a change which exposed the viral all Kt plaque to the extracellular nuedini, consul mhititiois.

Cs though hinged gates have swing from mitiol contr to gemmule contact:
Lusfect, the would proven KT bade flow pom g. $t=m$. hock minear rest.
$8 / 24 / 64$
Thought done berdso-denditic synappes between granule cells of mitral cells of olfactory bulb.
(1) The late potentid is a dipole with zero contour ot mitral soma logger, neg peck in extomal plexiform layer o posipeck in intanal plexiform lager. Seams to best fit granule cells beconse \&eel that such a symmetric dipole depends upon a substantial core condractor which extends from the neg. to pos. peale.
(2) This epoch is associated with mitral cell iuluifition. \therefore the other, lng remoter possotilety is an actin hyperpol. benin consed at initial. axon hillock
Here is a model wheres dendro-dendritic contacts between mitiol cells ard granule cells cowed accons for these phenomena. Formally, activation of the mitral cell (either anti--or-orthodromit) will depolarizeits secondary dendrites; these could, by
ouse dendro-dentintic plaques, depolarize the granule cell dendrites; if the granule ell depolarization reaches some threshold, then the placques charge to hone \Rightarrow perhaps due to regenerative depolarization v an innititary effect upon the mitral cells. 1 the regenerative depolarization of the ramble cells would setup the molorged dipole field that is recorded. The granule cell has no axon to: may hove no prop. Spike. Thismitutution would for cos "lateral "o "Syround" munition and shored serve tot sharpen contrast.

Tor \#5 of $p .49$ of.poge 35)

$$
\begin{array}{ll}
R_{1}=500 & \\
R_{2}=4 \times 10^{4} & \text { RACT }=500 \\
R_{3}=50 & \text { RBSQ }=1 . ; \text { RBFR }=80 . \\
R_{4}=1 . & \text { ROUTB }=50 . \\
R_{5}=.05 & \\
R_{6}=10 . & \text { ROUTC }=10
\end{array}
$$

$$
\begin{aligned}
& \text { Q/ENCHA }=R_{5} * \text { RACT }=\frac{500}{20}=25 \\
& \text { Q ENCHB }=R_{4} * \text { QENCHA }=25
\end{aligned}
$$

Qo Tiry	cool	Hot
RACT	400	600.
RBSQ	1.	1.
RBFR	80.	80.
QBNCHA	20.	30.
ROUTB	50.	50.
ROUTC	10.	10.
QPACAB	20.	30.
	10.	10.

8/25/64 Because 64791.0666 (passive dendrites) used deubitic ε in order to avoid delayed or locked roma spike, it is not possible to prim The equividen problem for active dendrites. Geonbtric handicap: $\frac{\text { USA }}{\text { USA }}=80$.
\therefore Decided to toy to reduce geometric handicap to a value of 40 . an ty to manage without
Also, moor using WXRT93C (olthosh 791 still avail) and consider that $V \propto R B S Q * V^{2}+R B F R * V^{4}+\cdots$. Whereas in $W \times R 791 C$ we here $\dot{V} \propto R I N B * V V^{3}$
\therefore Sett up 64793.8100 series for new cool kinetics ant 64793.8800 series for new hot kinetics

Here the UD values $=\left(\frac{1}{D z}\right)^{2}$, as then should $U A=\frac{1}{4} U D$ to tore care of diameter for some $\triangle L$
64793.8101 axoudspikefine: Flochal at soma $E 0$.
64793.8102 extue yomine voy dore)
again
.05
This cousunad checken 5 minantes. IFAB $=0$

$$
\text { NT* NSTEP }=404
$$

$8 / 27 / 64 \quad$ cooleninctios, dentistic $I_{1} C_{1}=0.1$
64793.8103 soma block woth pensoe den hites bovely obore therlbed worth a the dunhe
64793.8801-8804 all blew up becouse NSTEP wad too suall for hat kniecis is
64793.8104 I.C. $=.15$ soma beork with popmpe dendite some rivadod mith a chvi den drites ayou hal a roflected ortho howic persumety because of soma dolay.

$$
\text { peak }=0.2113
$$

$64793.8105 \quad I_{1} C_{1}=0.2$ soma Glock woith peomedudulie

64793.8805 did unt hare an afond spike.

Theuk kinction (hat) werp or
Ceno \&/28/64 Duto UA $=100$ inghy $\Delta Z_{G}=0.1$
64793.8811
$8 / 28 / 64$
64793.8812 UA still 100. inphyur $\Delta Z_{a}=0.1$

$$
I_{1} C_{1}=0.4 \mathrm{~m} @ \text { and (2) }
$$

reenso, axon stillfaited to fire.
64793.8813 same with I.C. $=0.8$ in (1) only

Here ayon did fire, lut soma blockeed. eventhough dendsitic F.C. $=0.05$

Nour reduce

$$
\begin{aligned}
& U A=50 ., \quad U D=200 . \quad \frac{U S D}{U S A}=40 \\
& R A C T=600 . \\
& Q A=Q B=30 . \quad \text { Also Giont Eytacellular2 }
\end{aligned}
$$

64793.8814 dendritic I.C $=0.1$

Got long axon - soma delay
begining of synchronows dendriticspike
64793.8815 dendritie I.C. $=0.2$ aronsomadeley Good Sorma spike, excest posithy
tolls too ont woy wosh to reduci que falls too fort, waywh to reduce quench
*
Dendritie Sprite syuchronons Good whon wish to show ho Good Giat Spike $\left\{\begin{array}{l}\beta=100,25 \\ \gamma=1,1\end{array}\right.$

$$
8.0=.21 .5+5
$$

$$
\begin{aligned}
& \text { a }
\end{aligned}
$$

$8 / 27 / 64-8 / 28 / 64 \quad \begin{array}{ll}U A=25 . \quad \frac{U S D}{U S A}=40 . \\ U D=100 .\end{array}$
$64793.8104 \operatorname{cool}($ RACT $=400 . \quad$ quench $=20$.
Dendsitic I., C. $=0.15 \quad$ IFAB $=0$
Got delayed soma ssitre for actire case (quer reflection) blocked 11 passive
64793.8105 Denditie F.C. $=0.2$

Cetrie Dendits fired 0.027 ahead of soma; almoot synchronoua Sousia blodret in cose of possore denbrites, although somapeak $=0.2113$ must he wear thaschold.
64793.8201 Dendritic Synoptic E
aloo $\frac{U S D}{U S A}=\frac{1}{4}$ tomabe ayon mimic load

$$
U S D=U D
$$ (due to secondany deuthito of mincelf cell Discorerad protem of same nimlofined dendivitic of.

* Successfully carsed soma to fire inspite of secondary. denbritic load. Soma seconloryspike was syudsonons bin note tho seconderies active lite soma
* Shoup falling phese PACT=400. quench $=20$.

Note: foreithacallula potentiofs of popitation. Dlog need to comprite some spatial and ternporal smear. also, firnig trou firnig smear

Mayn need to iovke radial Ve to set dop poas. hu it betive it con he gotleri abso mis plecing e forither
$8 / 28 / 64-8 / 29 / 64$
64793.8202 similes to 8201 , except only 6 dendritic pto.

Put $\varepsilon=8$. in two mont peripheral pt. $g=8$. in two trunk cpo.
Soma and secondaries fired a very enl offer The inturtition had been turned off.
at peak of dendritic Esp $(i . K T=40)$, for $K V E=2$
Get Neg Ve in gits 9410
pod le fol the rest.
Bivthis is not a good model for gramile cell because of the heavy ayonal (2ndaydenhtiti) load

$$
64793.8203 \quad U A=U D=U S A=U S D=25
$$

This is granule cell equirbent aphides
Put $\varepsilon=1.0$ in dendritic trunks $(5+6)$ Also PACT $=100$. an / Quench $=10$.
passive synoptic potential starts on spatially symathic However, asymity develops, presumably. because of local response in compartments $1-4$.
for KVE $=1$, all gits are neg. exopp apt. 10 at zero for KVE $=2$, gits $5+6$ mot nog. ; apt 10 wart Mightily t Tor granule cell, need deepsonce, to make dep pos.

8／3／64 WXR794C
tacreased serimension of WXR of $B E B 3 C$

$$
\begin{aligned}
& \text { no of } B E B(J Z, K E J) \text { t }(14,10) \\
& \text { and } B J C(J Z, K E J)
\end{aligned}
$$

and arranged to read in from separate cards 966 forest which include all colnpartmerts for $\varepsilon \notin \mathcal{O} 2453$
Oho，筑 $382 \quad A B(J Z)=A B(J Z)+B E B(J Z, K E J)$

This means that $\varepsilon \neq g$ are added to eyosthy verne at KTA and nothing－in done 9 KTB in The active case，whereas Es or ore set t hero in the pop sine case，in the axon all soma．
at 725 arsouged a test such that
IFVE $=1$ ships printing ort cone of $K V E=1$
whereas IFVE $=2$ orgester gree $\left\{\begin{array}{l}K V E=1 \\ \text { aid } K V E=2\end{array}\right.$ $\left\{\begin{array}{l}\text { ard } K V E=2\end{array}\right.$

Sis－oncly with external shunt．
Note：to mimic radial aped on deep re，could make CORE＞1．
He5
$8 / 31 / 64$

$$
64793.8816 \text { dentititi } I_{1} ._{1}=.2, .2, \cdot 15, \cdot 10, .05,0
$$

ethenisiseline. 8815 em p. 60
Here attemplead wake spike less syuchronows.
Got long ayou-soma delay $\approx .25 \varepsilon$ and it loths as though dembites woul hosgnk.
64793.8817 Reduced quench from 30, to 20, ant ROUIBProm 50 , to 40 . Aloo added a thid giont. $\beta=6.2$ densuitie . C C $_{1}=.25, .20, .15, .10, .05 .0$
afon-somadeloy ≈ 0.18 r \& got reflected ortho. deubrtic spike almost syuchonows.
64793.8818 same eropt I.C. $=.25$ mi all dendentic optes. oborously underquanched.
8817 hod miteresting spike shope, hit proboply pel
too dow.
better ni 8819 where quench was nicreased back up to 25. (seemertpage)
$9 / 1 / 64$

$$
\begin{aligned}
& 64793.8819 \text { quench }=25, \quad \text { ROOTB }=40 \text {. } \\
& \text { denditit } I_{1} C_{1}=\cdot 30,30, .20, \cdot 20, .10,110 \\
& \text { IFAB }=0
\end{aligned}
$$

Goodruy: $\{$ ayousoma delay $=0,7$ と
froctrap dunturs $\left\{\begin{array}{l}\text { synchronons denlritic spike }\end{array}\right.$ Shope of action potertial very good
for pasive dendite ; arousona deby $=.19 \tau$ seflectos orthotromic
Good giant eytracellulars

This series has shown that for actrue denblites $\begin{aligned} & 6 x(\Delta z=.071) \\ & z \approx .42\end{aligned}$
it is almort impossible to avoid synclusonous denbitice
J) spike. - Af this wipes or extralbub (must now be sum) This moy provide a storg orgomenem agonst active deudrites, contingent upor $\#$ length.
Note that $64791.0669 \mathrm{had} z=5 \times(.25)=1.25$
also, $A B$ ston moyned sonctic nititition anl fertops USA

ali, i. os ios \qquad - 2
0. \qquad

S.
$9 / 1 / 64.649994 .8204$ first text of row program.
minic granle cell.
minir granile cell.
Censtereremplever zeo

64794,8205 had same trauble yledt ta
discovery. of notlen
Now pit in a recompite.
Reran 64794.8205 stested, luv blew up becausse

$$
\text { NSTE } P=10 \text { torsmile fo } D T=.05
$$

Put back as .8206 woth NSTE $P=20$
64793.8820 workd very well

$$
I_{1} \text { C. }_{2}=0.3 \text { at soma o dentutie tumis }
$$

Both active 4 lassre were good. Excopt actrie had too little ayousoma delay
Set up Production rema $(9 / 3 / 64) \quad N T=51, D Z=-1), N J D=8, N J \sigma=2$.8821 similer to 8820 with $I F A B=+1$ Tatadly not

$$
.8822 \cdots-1
$$

$2 d$

3
Jow now behow 0888. (ent.)

Wachas ences to $8.0=.0 . I$

 $1+=34974 i n+0588$ of nalimize 1588 ?

$$
\begin{aligned}
& -20215060+20063
\end{aligned}
$$

$9 / 2 / 64-2 / 3 / 64$
64794.8206 attempt at gramule cell withall $\mu=25$.

Remelts suggestine, but $D T=.05$ toolage also RACT $=200$. too lage
for $\varepsilon=4$.
got pendospike at $K T=2$
\therefore : Set up 8207 with $D T=.02$, NSTEP $=10$ debest I.C.
redued RACT to 100.

$$
\begin{aligned}
& \text { also ROUTB to } 10 \text {. } \\
& \text { at RouTc to } 5 \text {. } \\
& \text { A E (dowhitic to } 2 .
\end{aligned}
$$

64794.8207 This wos sidl too hot t too fost in The dendites

Howeur the polarity of The eitracellular workos ons prety well as we want it.
ie. peroph neg $\approx-2.0 \mathrm{mV}$
set up 8208 with $\mathrm{RACT}=10$.

$$
\begin{aligned}
& \text { quench }=2 . \\
& \text { Rouls }=2 .
\end{aligned}
$$

ad aft $\varepsilon=2$. to moin perpheral deublitie op. also.

Stefanis thishis that nosmally mary cells do not in rode antidrounically ff Tho invaspon con be viduced luy depolarization, eithor byy a drug, or lys.pastistion with an ittracellulor electiode.
onever Goba + Glutonate preamably provide k If indioution locking sona o phoboghing a wizger grobien pom soma to dendrites, erp whir The deubris fire, This goves larger current aullaryer 4 peak. Af Tho final © very lorge, This could nean soma fires late, presmatly shipped bepre unere inctial veg. was coused by hithoc
$9 / 3 / 64$
Talkedwith Stefanis (St.ilizabeths)
\& Gordon
He records exthacellularty pom Betz cells. with t crithant drups \& Healro hos sood istracululer neorls.

nomial extacellabr

glutemate sincreases

$$
\sqrt{+} \hat{v} 1 / 2 m x
$$

nste of spontaneans fining.
(he mep it depoltide cell) depresses anplitade of eptual.

Goba alone stopo cell tu gobx + glutainate gives ixtha large

Ny tensathie miteprsatation: inctial negatinity canc fy sormattor fining. Cos in 1962 Bighmp of. siddle por, if suall, coued he che to oppol. of soma. iflange, presund dalso dre to dentiticfiring. Otten last reg. due to denbitic repol. glutan ate dopol. perhyo suole all, livepp. densentes. and this favors dendritir ferning + hence enclaves The middle Θ and fiñal Θ

9/4/64 Results.
The ininitstory g was too strong (also the E) (proboblly due to $A B \& A C$ beng im fotpeninuts
seep. 93 of Boot 3

$$
\text { Hen } \triangle B=.^{2}
$$

$$
\Delta C=2 \text { 。 }
$$

Soma CPt. in 8111 a 1.8112 clesly shows swere ipsp jurhs doe to g.
Cestarily was ouccessful in preventing soma finnig.
The epsp jisho show in duchntic periphery for $K T=5$ seens to hane been sphoctory at $K T=10$ ar $K F=20$
Yhe antidromic impulre olmont ancceeted, lus inturition wes tor severe.
$9 / 3 / 64$
Setup $64794.8111, .8112, .8113$
which carry on from $64793.8104 \neq 8105^{-}$ cool kinetics
with a new emphasis
The hope is that I.C. of dendritic E alone (.8113) villcarse spontaneous firing
That this plus soma trunk of will wot (.8112) क That bothy plus antidromic, will fore first in The dendrites and then in the Soma, thus going a somatic $A B$.
$\frac{\text { USA }}{\text { VA }}=\frac{10}{25}$ and at a good A spore
ebitrotorus for hittor to soma
$\frac{U S D}{B S A}=\frac{1001}{101}$ armet at wilder geometry
Four NE Joist at sustaing the ε g g for a longer tinine.
May wish to spot check this for one case.

Seep. 82

Gordon likes $\frac{U S D}{U S A}=40$. intuitively, in preperance to 80. setup 64791.9601 as new variant of $0666 \quad \cup A=25$. with $N J D=5$ and $D Z=0.1 ; U D=100$ i/some copreaty is 2.5 times that of ayoual cst., get USA $=10$. and USD $=400$. inglywithot soma coprecety io half that of combined dendintic fuss Compar wienie-
$9 / 4 / 64$
Lookniz bock at 64791.0666
To wish suitability for paper, or how could he improved! zero hour approaches, for wasting the paper with Gordon.
tu there two, we hod CORE $=.02$ and $\frac{\text { USA }}{}$ USA $=80$.
also dendritic $Z=0.625$ in .0666

$$
\Longrightarrow=1.25 \dot{\sim} .0669
$$

Probably too long.
Que lated review of fititial 6 ells suggests the range 0.5 to 1.0 or 0.4 to 0.8 as closer
Soma)
Also, here threshold was close to 0.1
Wheres in anuran 64794.8800 series it seems to he aroma 0.25

* Coned checker o cheraterize by Twesholed sympspip pot.
* Coned do series to test threshold at soma and dendrites.
athloth 666 and 669 axon-soma delay was poorly too large. (not sur really exact that thereon raglétod spae in 669
*

Reconsider CORE and USD Motion

$$
\text { suppose } \frac{D D}{D A}=3 \text {, then } \frac{U S D}{U S A}=5 \times(3)^{2}=45 \approx 40
$$

or suppose $\frac{D D}{D A}=4$ forpumians
and 2.5 foppoviscombiniee get $16+4(6.25)=41$
Whenas CopE deperaboypon $\sum d^{3 / 2}$ aud get $\approx(8+4+4)^{-1} \approx \frac{1}{24} \approx .04$

$$
\begin{aligned}
& \text { ए900. } \\
& \text { 90d }
\end{aligned}
$$

$$
2 P 0_{5} \div 52.2 .0=5 \text { sitwhers ase }
$$

$$
58 x,-2 x .1=5
$$

ant alsma 8ealonky hervar hedell mild
8.0 a. 4.0 co 0.1 के 5.0 \qquad

 diond

9/4164
Try to catch up.
Hore gotten snowed mider this wedk, letweon doniz mavy colculations of talking with Gordon abais the coitte up, figures, termiology, etc.
Currant Colcutations are in Series
Sosioes 64794.8800 antidromic, hot buietics, actuie o possibe varied USD and NJD and I, C.
Series 64794.8100 eomeler hinatics \rightarrow Stefomia problem

Series 64791.9600 modification of 64791.0666 Possive
$\cos +\operatorname{sic}+3$ an and

 atarent minentises

$9 / 11 / 64$
64794.8200 Series

Gramile cell extracellular Potertiol Model Began p. 67 whe have 64794.8206 4.8207
64794.8208 Here RACT $=10$. ; Rout + QENCH $=2$.
use $B=2$ in mootseriph stot.also.
Suteresting but ppts 1,2,3+4 fired in anlplone
(wot wanded)
also ept. 12 action pot. as leyseas 9 aro
(ior Deciblel to nicrease B in ypt. 8
decrear B in epts 10,11,12 of put lorg sustanied C mito $1,3,3$
64794.8209 suppression of spheri 1,2,364 But got grithe later ais in 10,112112 also persplhenal Sink soletinely tor sting

$$
\begin{aligned}
& V_{e}= 1.8 \sigma^{2} \\
& \text { lota peak }
\end{aligned}
$$

$$
V_{e}=-\frac{1.6}{\text { Tpeokh }}
$$

\therefore Added stiouger minter 5 co. 7 \& $10,11,12$
64794.8210 Worked quite well wath segarl to synchong of dep $t+$ supersion - estacall. Homever, neg was too lage rel to pos. \therefore wehber sink of shift crossoner

$-2 \pi+3$ grose theys

dxattomin $S=8$
 Comurutan)

8ta in 8 mowing atw

$$
2 . x-\frac{1}{4}
$$

$$
-3.8 .-1=\$
$$

$12 . \cos -8+2+2+2+8+8$

Dowsentind

$$
1168 .+74
$$

9/11/64 64794.8211 of merions poge workel quite well
for the gramile cell problem.
deep pos $V_{e} \approx 3 \times(.94) \approx 3 \mathrm{mv}$
Supefivial $\mathrm{neg} \approx 3 \times\left(-.7_{3}\right) \approx-2 \mathrm{mV}$
with Fiming pretty well syudronous
Howeor, decided That there is proboply an earhier phase of grannale cell somat trimk intutition which tonerlops Adistorts mitial cell tousient. Thesofore, set-up neqt problem with this in mund.
64794.8212 Not bod as a first tiy, but decide to hove some ε midendintic periphlory and elro to strougthen E in cp. 8 ret to 12 also, hy to minimize arbitionines.
64794.8213 goofed hureverso $B P B C C$ cands
for KEJ $=3$

$$
\text { for } k E J=3
$$

rerm with this consecte \& with muitichanges.
$64794.8214(9 / 12 / 64)$ pretty fair but int looks as though $5+6$ shoull he more in hit. for $K T=18-31$ 8-12 " " "excit. for $k T=14-17$ also, overell sink corld he shisity weakened. \therefore add an KEJ at $K T=12$, add flattoned of + tunhe E fultb bettere
$9 / 1164 \quad 64794.8800$ Series continued from p. $66+6574$
64794.8821 Production $\operatorname{Pum}(9 / 4 / 64) \quad$ N58 $=8$

$$
\text { IFVE=1, IFAB=+1 } \begin{aligned}
& U D=200 . \\
& \text { corepopto } \Delta z=.07
\end{aligned}
$$

Hot kinctics, possivedeutrites no syneystic \mathcal{E}
Perfectly good results, but meant to Erone $U D=100$.
64794.8822 Coneqpondnig sun for active dendrites

Dendritic spwhe was essentially syuchonors
 approy 400μ for .04 mes approx $10 \mathrm{~m} / \mathrm{sec}$
Sisn of seple outitromic
Tooknig at extracellulor dendutre pot.
it is prosible, but not really legitinats, to coay out a 1.2 mysec figure bif
tahng ($-t$) crosover for ofts $4-8$ and negpeake for H ol2
Aowear, wear synchony yields suall amplitode eftracellular poto. giant atracellulars are good.

$$
\begin{aligned}
& 3 \times 108 \times 18 \\
& \text { Jharox }
\end{aligned}
$$

$9 / 4 / 64$
64794.8823
$U D$ reducel to $100 . \quad \frac{U S P}{U S A}=\frac{400,}{100 .}=40$

$$
\begin{aligned}
& \text { NJD }=5 \quad \text { IFVE }=0, \text { IFAB }=0 \\
& I_{1} C .=(0.2 \text { in denulsites + soma } \\
& \text { expopt pot.9 }
\end{aligned}
$$

Active Cose gave syuchrouous dendititi sqike Passore Case blocked at Soma
This shows again That camot hare sumple pair.
64794.8824 similar, with NJD $=10$

Active Cose had rem little axo--soma deloy A very little dendutic nivemog le turay
Passore Case blocked at soma.
64794.8825 sameas. 8823 with $I F V E=1$, $I F A B=-1$ exopt get. 9 abro hes F.C. $=12$
It is amezury to note how the 0.2 m pst. 9 faulitited ayon-dendretic nivasvon oner 8823 Su 8823 , The soma frued at KT $=17$ tu8825, the "'". - 14 and the 'denhities spite io alnastprecisely syuchorono
Conseqnently, Ve peakat soma is only, 0186 .0186 mV Tojefiole anplistile.
$9 / 4 / 64$
64794.8826 same as 8825 excopt that $I C .=0.3$ in dendintes

$$
I F V E=0, \quad I F A B=0
$$

actriesoma of dendrites fired abod of 283 cleary deudsitic I. C. obore turestrold. for davintic spitse
Parsore cose wos besely threrhoted for soma. Vook off ofter some delog
Again proves difficulty of simple actingposse peir. won't woik with same I.C.
64794.8827 here $N J D=10$ IFVE $=1$, DAB $=-1$ $I C_{1}=0.15$ in somar dendistos
Danbitic spobe very neasly vyuchsonows Snall aytrocellular

$$
\text { veg peak I soma }=-0.34 \mathrm{mV}
$$

Equipotantial Contours not tor for off,, amplitudes are small.
64794.8828 saume as $8827 \quad($ NJD $=10)$ bat with $I F V E=0, I F A B=0$ $I_{1} C_{1}=0.3$ in dentrites only
Actire cose, gsto 9-14 fired lopore 2-8
Passirecase, bardy Threshold for soma.
64794.8831 showed that PBSQ $=0.5$ had a
slizlit effect compared with 8825 , but not
serious! all spites now have
shifty Smaller couple.
.8832 blocked at soma
Seabed to se up

$$
\begin{array}{r}
.8833 \text { with } B=.05, .04, .03, .02, .01 \\
\text { foreodkEJ } \\
\text { ant } .8834
\end{array}
$$

$9 / 4 / 64$

$$
(9 / 12 / 64) \text { opporitepoze }
$$

setup $64794.88+81+832$
.8831 to test affect of reluanig RBSQ from 1.0 to 0.5

- 8832 to test ide of getting decremental conduction in the dendrites hoy slugging C into The dendrites, grad tows perifinery F also reluncuy ROUTC pom 10. It 5.
*

atternatine would be to modify progion to percent UD to be nonsymmatric

This is related to notion that butcup of q is what conses soma to fail when loaded with possore dendrites of that this has resemblance with accoudation of con gree grades of decrenental condition.
Maybe Dish fitsutugh's concern obow the possibility of a second stable state can be turned topmofid here. Perhaps this is an accomodatine state. whore stability need not be absolute bicanse we could bring in a slower seconery process.
population of nutial cells during antidromic invasion. The ot heer consosts of a dofferen k^{2} sequence. of munbrane potentid gradieuts in Nitral-GEd and gainile - GEC. The gramulation. Mitral-GEC and graumle-GEC.

9/4/64 Yestorday Grdon 1 discussed wite uns
Need to distinguish cleasly between the apperant Phoses of an observed ectracellular poterlial transient and the hypothetical underlyinig geveratorss of the estracellular current which produces these potentiods.
Undbalynig, inhomoseneity or grodient The manbrave of a suizle cell is needed to The menurare of a suige all is needed to non-uniform conductoncee charge, or simiply. a non-untornity ofrivienentrane / poteutial Possitle Names

ULCGI umberlyniy cusrent geverating in homogenenity

* GEC Goverator of Extracellular Current

NGEC Nurronal Gewerotor of Etracollule Curant
NMGGEC Nenronal Monbrone Grodient which Generates Estracellular Curead
Butperhops GEC is Gest, with At of elaboration. Modelassumes That ist opprox can he achieved ly means of too GEC. One of these connists of the seqnence of nemerane polentid gradients in each cell of the
$9 / 11 / 64$
The poper will need a table o/ Dffiritions, nich inding. suchitens as

GEC
Mital - GEC
Gromule - GEC
ε
©
CORE
USD/USA 三 Geometric Hurdle
S-length (Eactor (Extomal Pobutial Diviblor) Response Perioda I, II, III

Kinetic Constants
furcease of Latency with Distance.

sliyits siift of. I- II bandery prototh due to prom ganule Gel
attenvation of ng. peole is a crutch Should not nesent, better to present Ve vs dopth at severel diffrent times

	peakneg 64794.8821	
4	1.46	$\frac{\%}{2}$
5	1.02	70
6	.680	47
7	.412	28
8	.212	14.5
9	.16	7.5
10	.109	7.5
11	.13	8.9
12	.143	9.8
	0.56λ	

$9 / 4 / 64$
Somequanto tative chadks, also plot of atternation
in 64791.0669 (actine) at soma level $\left|\frac{\text { pospeak }}{\text { negpeake }}\right|=\frac{1.13}{1.59}=0.71$ at glonerulen level $\left|\frac{\text { peak neg }}{\text { peakpeas }}\right|=\frac{.285}{.385}=0.74$
which verifies that theoretical sufface secerd is inversion of deeprevord
\therefore pear to pek amplitude: $\frac{\text { Soma }}{\text { glom }}=\frac{2.72}{0.67}=4.06$ whoch comes direstly from potantid chivider assumption of The model
in 64791.0666 at soma level $\left|\begin{array}{c}\text { pospenk } \\ \text { ngperchere) }\end{array}\right|=\frac{.451}{1.43}=0.315$
at glomarular $\frac{\text { pey }}{\text { pos }}=\frac{.115}{.345}=0.334$
The data consulted reems to lie in betroen.
Glso, when preak amplitucle is plottep vo distance Find that exp. falls more shaply than active denlsite cose, lnt moreshorly than passove dendrite cose. Also, expr case boes not seem to gove a min. amplitude as record Furus oner? This fits bext the shost possive case. $.0669 \%$ mingeypedes $.0666 \%$ \% mixiter approx dota

cpts 4	100	100	55
5	99	26	100
6	92	10.5	75
7	24	6.8	55
8	37		8
9	18	1.25λ	$8^{.625 a}$
9		40	

08

of maybe neg. eveyvtore, due co nsen low to The
temanal sumb of offerens
Hiver terminala whish, would be viost neg. deop ant less
reiftowil sutpee (ountomed shuntry
$q / 4 / 64$
(9/10/64)
Although the computed surface record is a perfect niversion with rescalnig, of the depp record. This is not true of the experimental record. The experimental suspace record lends to favor the neg peck (II) ores the pes (I)

* The crossover of pecks seem a little earlier.
This might all he explained Wy an overall neg drift which wright he an carly effect of The granule-GEC

This idea requires tho granule cells receive sone early inhib. input at the some twee as the mitral cell soma ropolarizes. Gordon says that this is possible ln nears of other firers in the stimulated tracts these are large and would conduct fort enough; he wants to recheck that anatomical \&physiological evidence.

Furthermore, if this stands up, it could accom for less shift of the initial soma level extracellular record, because There we are weer zerocontom (unit.) of the granule cellfield. Intort could even start on The ne q site of zero contours. This could probofly accan for the imperfect phase" relation between the surface of mitral cell level records. Thiscompliation wed not he discussed at lequis of popper. There might focus on the inversion aspect of hereseconds

9/12/64 Brief revien of the 64794.8100 series which attempto to compere three coses a denbritic E olove to givespont. firing
(b) phea somatic of to suppers 1111
(c) plua antichomic which helps denbrites to fire ahead of sama
$64.794 .8111,243(9 / 4164)$ ores toostrong at soma,
lun did not mrever perith doudsitie, lin θ did not preven preipth doudsatie
spike, some Epulses reveal acpact a actormal state
$64794.8114,576(9 / 5 / 64)$ here 7 was too weake. also some cords seversed.
$64794.8117,8+9(9 / 8 / 64)$ goopd with $\varepsilon=.075$ formot prichd up 50.
$(9 / 9 / 64)$ resm fornst prichtd $\varepsilon=0.07$
needs shouger needs strouger go $64794.8121,2+3(9 / 10 / 64)$ getting better lin need to
delors antadsomic spike deloy antidromic spike
\& aroud $K T=12$ of
$64794.8124,5+6(9 / 10 / 64)$ Here delanedsppive ly addingy
to ayon.
somanot invaded aintidromically. otheruvise pistly close.
$64794.8127,8$ क9 seduce quench AROUTC use NSP
($9 / 11 / 64$)
$64794.8131,2 \times 3$
(9/12/64)? madine enor? futher veluce RouT
gooped in setting VSP $=5$. mistead of

ar losk do2 Sinmaritwo mull (s)
amos is baulo asi à notitueb

1 ssitice
ath2 -
 - tescreper ahas enez andos

$$
\begin{aligned}
& 40.0-3 \text { nht man mace }(x) \sqrt{2}(5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { S SIETX Kando }
\end{aligned}
$$

$$
\begin{aligned}
& \text { wer a }
\end{aligned}
$$

$9 / 14 / 64$
Some suffer recordo egs Prod 3 of epril 12 alro Way 16
surfor, poz. lines up wed with deop negativity. sufare neg not sootrions

But in May 2 (illuistiation seios) May 31 Prols $1 \neq 2$
smpoe reads sur
presundy $\approx \frac{1}{20}$ pot. divieiler
effoct.
probably-nore suffoce salivo
Moch 29 suppert leods deop reagslozkty sufface neg mist he due to aftam aron GEC

88
 ग1
Stanecna

$$
\begin{aligned}
& \text { (ake nothentinui) } 2 \text { and mater }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{din}+\frac{2}{2}+\frac{1}{2}+\frac{1}{2}
\end{aligned}
$$

$9 / 15 / 64$
64794.883344 atteng t ar decrementally couductet dendritic spike I notenough I.C. fhise wos too much
a thally, th derbity spike occund bofore The inttor spice. Could reme with dembritic I.C. seducel to zero.
64794.8215 gramble cell appox worbodpretty well

Could smooth the E somarke at $K E J=3 \neq 4$.
Wayfe climinate EfroukEJ=1
64794.8131,2\&3 Denlite Ef q quifichowic senies ayound syinh freded becurn foronidg elvo minitided too late
The Ealone is OK and will not need to be reppatod is. 64794.8133 verysmilor to 64794.8129

Inun.deep

$$
1.000
$$

Rescaled huserements

- 199
.066
.072
.080
.090
.101
.114
.130
$\frac{.149}{1.001}$

But now the question is: For current generated outside the conical element how much IR drop is there from INDelectrode to The bulb surface. How
$9 / 15 / 64-9 / 16 / 64$
Comider the radial aspect of ire in Olfactory Bulb. Estimate Radii of curvature at different levels bubbsusface ~ 2.0 mum glomerular level 1.7
mitral cell 1.3

$$
\frac{d R}{d \rho}=\frac{R e}{4 \pi p^{2}}
$$

deep granular 1.0

rescale
does this compare with the drop along the cone.

$9 / 16 / 64$
Conies the possibility that $R_{\text {cone }}=\left(R_{g g-i n d ~}+R_{\text {af -id }}\right)$
Then the 2 mV difpence between The dep and the surface record means that open circuiting the external path would make the deep record equal -4 mV (now isolated from outside)
Since we estimate that $\frac{R_{g l-a d}}{R_{y y}-m \text {-d }} \approx \frac{1}{4}$
We would hove

$$
\begin{aligned}
& R_{g x-u d}=0.2 R_{\text {cone }} \\
& R_{\text {staid }}=0.8 R_{\text {cove }}
\end{aligned}
$$

Suthis case, the current the to aff-My-G-EC would

$$
\text { Sep apple }=\frac{1}{6}=1 / 5
$$

However, comster other possibilities

$$
a^{\prime}=
$$

$9 / 16 / 64$
Compare conical resistance from $\rho=\frac{1}{2}$ mun to $\rho=1$ um

$$
\begin{aligned}
& \frac{1}{1 / 2}-\frac{1}{1}=1 \\
& 1-\frac{1}{2}=\frac{1}{2} \\
& \frac{1}{2}-0=\frac{1}{2}
\end{aligned}
$$

However Rcone isfrom nutial soma level to glomerular level

$$
\rho \approx 1.2 t_{0} 1.3 \quad \rho=1.7 t_{0} 1.8
$$

\therefore This resistance $\propto\left\{\begin{array}{rl}\frac{1}{1.2}-\frac{1}{1.8} & =.833-.556 \\ =.277 \\ \frac{1}{1.3}-\frac{1}{1.7} & =.769-.588\end{array}=.181\right.$

$$
\text { Resistance from glom to surface } \propto\left\{\begin{array}{l}
\frac{1}{1.2}-\frac{1}{2}=.588-.5=.088 \\
\frac{1}{1.8}-\frac{1}{2}=.556-.5=.056
\end{array}\right.
$$

Resistance from surface to $\infty \propto \frac{1}{2}-0=0.5$
surface to $p=4 \quad \alpha \frac{1}{2}-\frac{1}{4}=0.25$
Resistance from $\rho=1$ to $\rho=1.3 \propto 1 .-.769=0.231$

$$
\rho=\frac{1}{2} \text { to } p=1.3 \quad \propto 2 .-.769=1.231
$$

How much of this applies can be estimated from despgraciants caused In the external loop current, which would be $1 / 6$ of the GEC current for the case Rout $=5+$ Rover

$$
\frac{1}{s}=\frac{1}{s}-1 \quad \text { and } \delta=\frac{1}{5} \text { _avel }=0
$$

$$
\frac{1}{s}=0-\frac{1}{x} \quad \infty \quad \frac{1}{4} \quad \text { and } x=\frac{1}{4}
$$

$$
\left.8,7 \pi r_{1}=0 \quad \text { हो } \quad \pi+s_{1}\right) \approx 9
$$

$181==865-685 .=\frac{1.1}{8.1}-\frac{1}{8.1}$
7051.075 .0 .4

गeO. $\left.=25-2 \mathrm{~S}_{0}=\frac{1}{5}-\frac{1}{81}\right\rfloor$
 $25 \cdot 0=\frac{1}{5}-\frac{1}{5} \times \quad t=0$ at

2tracepasto
 Q28

9/16/64
Opperent Oxon GEC would genente same aussent as mitial avon spike if $\Sigma d^{3 / 2}$ were The some. Mitid allapon spike $\frac{1}{25}$ cursent of mitol sorva becoure CORE estimabd as 0.04 seep 70 assumg similar ssinke duration o knietics

Cojal samo There offerent ayous are sparde in the thact/tout they bifurcitl soveral times and'then forma yery exten sone arborization (plexuo) nigramule cell layes.
Suppose the plexuz $\Sigma d^{3 / 2}$ wereas nuch as ten twine that of mitial ayour. Then we would exppect $(10)(-04)=0.4$ of mitial sama cursent, + thus about $0.8 \mathrm{~m} /$ weg peck dop ard from bottom comes of 0.86 , supfer neg migithe 0.4 V Note: to get anythog S sumpee, requise that $\frac{R_{\text {sum }}-\text { ind }}{R_{\text {cone }}>\mathrm{mV}}$

Need to modipy program.
$K V E=1$ compites V_{e} for noshunt $K V E=2$ " \quad "for Eshimp cursent Need to shift from (1)-(8) to Js - inZ

$$
K V E=3
$$

(A) Affect of significant cosrent michting axonal yot
(B) effect of conical r_{e} including axonal compartments
$9 / 16 / 64$
Poperbaci to p. 29 of Book 3
Withel some V_{i} is a voltage sounce which pits out a curent determined by Z_{N} which dopends mainly upon P_{m}, R_{i} and geonatyy: Presunobly not ruich offectod hy Re. APthis is so, suale changes in lytornal condnctance would not charge the potal annom of extemal cursent.
Thus mitial GEC is a cursent generotor.
Tf the external loop poth has a conductance which is not neglogbly suall, it must divert some of the GEC curnent ot redruce The "apperent ext. dsinny potertiat". This is equivolent to inposing a steady cursent along re, which would canse a lmearly graded drop.

$$
\left.\frac{6}{6} \sqrt{\frac{1}{6}}\right\rangle
$$

Tinsishiner gudid to spacmp pore for
Thisis final (wott) henettont
$K V E=2$
$K V E=1$

41-44 sories gove tioubla compler unig IFTEST to detarnine whet hen $B E B$ \& $B J C$ are nooded. trolet

$$
\begin{aligned}
& \text { nuzio sove conghou USA }=5 \text {. } \\
& \text { USD }=200 \text {. }
\end{aligned}
$$

These are lut kinatico.
shoued alcoty cool kinctios

9/17/64
Setup new computations.
$64794.8835+6$ The I.C. were removed from 33834 also doubled g values
for 748 in 35 first BEB + BJC pair reversed 4 suinedram in 36 This was OK, but gits 4×5 fired a little too soon of' 8 persops too leto.
Robobly hast to weaken \& \& perthopo make mun form,
looknojboch ober 8831 - 8836 decile to ty Cop 36 together with I.C. $=3.1$ in some denerdey opts and $\quad B=0.05$ in n
for $64794.8837 \$ 38$

Compare with p. 76
$U_{\text {se }} I F V E=0$ and $I F A B=-1$ for small $I_{1} C_{1}$,
+1 for lares I.C. $\lesssim ~$
Try to get opt. before getting es
sup 64794.8841 Bt DD $=5$ att. $42 N J D=5$. pas

$$
\begin{array}{r}
64794.8843 \text { NJD }=10 \text { as. } \\
44 \text { M pass }
\end{array}
$$

For cool kinetics, compare wo th $64793.105 p .59$ coal 64794.8741 etc- 44 Note that USA $=2$., US $=80$. peshong Lot use 4 t $\& 160$. sTEP

$9 / n / 64$
Consider active versus for sore
AT An period I, the deep neg. and The surface poos. arr provided equally well by The active and the passive, or a decrestental case.
B Period II is more diagnostic, but is unfortunate ty experimentally muddy. becouse of GEC overlap.
Consider only The Mitral-GEC
Consider first only the deep record versus surface withow any external po th shunting..
This is like recordur from an axon in oil
(1) dendritic spike propagates very slowly, it is like two electrodes far aport in oil.
The neg a pos. phases are exactly the some exist for sign and displacement, provided that soma spike and peripheral dendrite spike are exactly the same 4 the delay is long enough That where electrode has api the, other electrode has wot.
(2) However, for very past propsog a ion and uniform spike shaper
\# The record approach hes the first fine desivestive, where the poop hare is suable thou The ne y phase because

$$
2 \exists-2-\operatorname{lantal} \text { ent aluo nelsemen) }
$$

 -atid .

 स्रि
$9 / 17 / 64$
In both coses, pot. diveider effect would unche surfoce secord a reduced inversoon of the soma secord.
F The pount is that the $\frac{d V_{i}}{d t}$ affec for the prop. Densutic spiche does gove neg(dep) larger then doop pos.
Whoch reduces dofference from porsove cose.
Thiswos, mfact, shown hy 64791.0669
\# This offininal activi cose does not so unch need cool kinetics as it reeds somewhat slower follinis, phese.
'However Cordor's secords inchrate that This of Poriod It is modenotoly shorp, at leapt in The itlustratine recolds. preg in anid segion
(3) In the passure cose, neamaily set perood II disturbance to be of sinaller anybitude than That in fesiod I, bus this has nothiog to do with Lerivatire of intracellular action poteutiat. This is differenciry of soma intradelulaz spithe ogomist, the tater, smoller electrotomic version formb at deuhitic posijh
Honerer, period II is comphirated ly Gramule \& afferen GECs.
Aloo, period II is nore subject to any sureas due difpranes betweenprinary secondery dendrites. see neft page.
$9 / 17 / 64$

$A=$ punvary
B, C, D \& B reprenen
differen sec. oventations
Ist appox. Suppose intracellular boento are The some in dll of the ha. Actually, $\lambda+$ length voriation conld cause some lemaporal disfersvon.
B drives its cussent acrors $3 / 1 / 2$ of cone resistacce of A
C

D_{E}	$1 / 4$

\therefore Ir drops shoul the propostronal to these is. IR drops rel. to suface.
Corsider depth pootentiods sel. To unshunted glomerular level ppt.levela $4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$
Apprinary $1 \times(4) \quad 1 *(5) \quad 1 *(6) \quad \mid *(9) \quad 1 *(8) \quad 1 * 0$
B secondery $\left.\frac{3}{4} \times(4) \quad \frac{3}{4} \sqrt{5-6}\right) \frac{3}{4} \times(6-7) \quad \frac{3}{4} \times(8) \quad 0 \quad 0$
C secoulary $\frac{1}{2} *(4) \frac{1}{2} *(6) \frac{1}{2} *(8) 000$
$D \quad \because \quad \frac{\frac{1}{4} *(4)}{2.5 *(4)} \frac{1}{4} *(8)$
Dividingloy 2.5 , get werght factos $0.4, B, C, P$
$9 / 17 / 64$
A test call. (log head) o/ primary-secoondoy smearnig. 64791.0666 wis corned ont.

Remelts attached.
Conclusion: That the crossover from susfoce type record to deep type record gets shifted deeper than for primary, only.
An this case, the smeared as apt. (6) is in the chanitioner region, whereas the pinion, transient at op (6) was of the deep ty pera Tor The minuay dendrite transient, the cevioun type training occurred a pt. (7)! All of these, forme, include the potautiol deader effect

NIH Coryniter Suptems Team
for trouble-shooting
(1) Noonan Thompson 65181
(2) Moura Hownmond
(3) Verman Zauder

Bob Brunalle
(32dg $31-4-3-19$)
Pridany 66021
Reody Room
Dolores Forcier
Mrs. Culpepper
Bob fillard
ferry Farlow 66037
Retty Garber 8
plottas truing Gillespie
Photagroply
Wr. Godwin 62251
dis ause photoz. of trees

$$
p, 57
$$

$\tan V=.4$

$$
\begin{aligned}
V^{2}=.16 & V^{4}=.0256 \\
R_{1} V^{2}=80 & R_{2} V^{4}=1024
\end{aligned}
$$

Sum is 1104

$$
\begin{aligned}
g_{S S} & =\frac{1104}{200}=5.52 \\
\varepsilon_{S S} & =\frac{1104}{55.52}=19.9 \\
\psi_{S S} & =0.4-(19.9)(0.6)+(5.52)^{2.76}(.5) \\
& =3.16-11.93=-8.77
\end{aligned}
$$

$\operatorname{try} v=.6$

$$
\begin{array}{rr}
V^{2}=.36 & V^{4}=.1300 \\
R_{1} V^{2}=180 & R_{2} V^{4}=5200
\end{array}
$$

Sum is 5380

$$
\begin{aligned}
g_{S S} & =\frac{5380}{200}=26.9 \\
\Sigma_{S S} & =\frac{5380}{76.9}=70 \\
\psi_{S S} & =0.6-(70)(.4)+26.9(\mathrm{~m}) \\
& =19.4-28=-8.6
\end{aligned}
$$

$\operatorname{try} V=.7$

$$
\begin{array}{cc}
V^{2}=.49 & V^{4}=.24 \\
R_{1} V^{2}=245 & R_{2} V^{4}=9600 \\
\text { Sum is } 9845
\end{array}
$$

$$
\begin{aligned}
g_{S S} & =\frac{9845}{200}=49.225 \\
\varepsilon_{S S} & =\frac{9845}{99.225}=99.2 \\
\psi_{S S} & =0.7-(99.2)(.3)+(49.225)(.8) \\
& =41.1-29.7=+11.4
\end{aligned}
$$

This hoo crowed one
Root nut be opprocy 6.4

$$
\begin{array}{ll}
V^{2}=.41 & V^{4}=.168 \\
R_{2} V^{2}=205 & R_{2} V^{4}=7920 \\
\text { Simin } 8125 &
\end{array}
$$

$$
\begin{gathered}
g_{S S}=\frac{8125}{200}=40.62 \\
\varepsilon_{8 S}=\frac{8125}{90.62}=89.6 \\
\psi_{S S}=0.64-(89.6)(.36)+(40.62)(0.74) \\
=30.74-32.3=-1.56
\end{gathered}
$$

Compere statility of g versus V plot at
(A)
(C)

$$
\begin{aligned}
& \varepsilon=0 \\
& g=0 \\
& V=0 \\
& I=0
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \approx 90 \\
& g \approx 41 \\
& V \approx .64 \\
& I \approx-1.5
\end{aligned}
$$

Whathoppens if we add ΔV to V lymeans of Spulse.
th(A) get $\tau \dot{V}=-\Delta V$, which is restorature.
Ln(e)get

$$
\begin{aligned}
\varepsilon V & \simeq-\Delta V(1+\varepsilon+g) \\
& \simeq-131(\lambda V)
\end{aligned}
$$

$$
\simeq-131(\Delta V) \quad \text { Which is storysey }
$$

$$
r \dot{g}=0 \text { for vistantmouns } \delta \text { pubse of chore. }
$$

$$
\text { hoween } \varepsilon \dot{\varepsilon}=R_{1}(v+\Delta v)^{2}-R_{1} v^{2}+R_{2}(v+\Delta v)^{4}-R_{2} v
$$

$$
=R_{1}\left(2 V \Delta V+\left((V)^{2}\right)+R_{2}\left(4 V^{3} \Delta V F \cdots\right.\right.
$$

See how mistabluty o/ mixlle point shows up

Follows p (5)
of yellow sheets

Now try $V=.09$

$$
\begin{aligned}
V^{2}=.81 \times 10^{-2} & V^{4}=.656 \times 10^{-4} \\
R_{1} V^{2}=4.05 & R_{2} V^{4}=2.62
\end{aligned}
$$

$$
\therefore R_{1} v^{2}+R_{2} V^{4} \approx 6.67
$$

$$
\begin{aligned}
& g_{s s}=\frac{6.67}{2000}=.0333 \\
& \varepsilon_{S S}=\frac{6.67}{50+.033}=.133
\end{aligned}
$$

.0063

$$
\begin{aligned}
\psi_{S S} & =.09-.133(.91)+.0333(.19) \\
& =+.0963-.12 / 3 \\
& =-0.025
\end{aligned}
$$

This is closer to The middle point.
Nextary $V=.08$ which will probably cross ψ tops,

$$
\begin{aligned}
& V^{2}=.64 \times 10^{-2} \quad V^{4}=.41 \times 10^{-4} \\
& R_{1} V^{2}=3.2 \quad R_{2} V^{4}=1.64 \\
& \text { Sm }=4.84 \quad \\
& I_{S S}=\frac{4.84}{200}=.0242 \quad \varepsilon_{S S}=\frac{4.84}{50+.024}=.097 \\
& \Psi_{S S}=.08-.097(.92)+.0242(.18) \\
&=+.0844-.0892 \\
& \approx-.005
\end{aligned}
$$

Which is very close

$$
V^{2}=.563 \times 10^{7}
$$

$$
v^{4}=.317 \times 10^{-4}
$$

$$
R_{1} v^{2}=2.81
$$

$$
R_{2} V^{4}=1.264
$$

$$
S_{\text {In }}=4.07
$$

$$
j_{s s}=.0203
$$

$$
\varepsilon_{S S}=.0814
$$

$$
\begin{aligned}
\psi_{S S} & =.075-(.08 / 4)(.925)+(.0203)(.175) \\
& =.07845-.0753 \\
& =t .003
\end{aligned}
$$

\therefore Crossover is approx at $V=.078$
Now, thy for this crossover
Begriwith $V=12 \quad V^{2}=1,44 \times 10^{-2} \quad V^{4} \approx 2.008 \times 10^{-4}$

$$
R_{1} v^{2}=7.2 \quad R_{2} V^{4} \approx 8.32
$$

toogterget 15.52

$$
\begin{aligned}
g_{s s} & =.0776 \quad \varepsilon_{S S}=.3105 \\
\psi_{s s} & =.12-(.31)(.88)+.0776(.22) \\
& =137
\end{aligned}
$$

$\neq-.136$
try $\quad V=.14$

$$
\begin{aligned}
& V^{2}=1.96 \times 10^{-2} \quad V^{4}=3.84 \\
& R_{1} V^{2}=9.8 \quad R_{2} V^{4}=15.36 \\
& \sin =25.16
\end{aligned}
$$

$$
v^{4}=3.84 \times 10^{-4}
$$

$$
\begin{aligned}
g_{s s} & =.125 \quad \varepsilon_{s s}=\frac{25.16}{50.125}=.502 \\
\psi_{s s} & =0.14-(.502)(.86)+(.125)(.24) \\
& =0.17-.43 \\
& =-.26
\end{aligned}
$$

Another words, hove fortur to look for This.
gross around $V=.3$ or. 4
When fund it, need to nivestigate its stability.

Talked with Dick Fitshugh
He hod two suggestions
(1) Compute Ess i $g_{s s}$ for small V of then polumite of pot INV curve two see I/ these are Three singular points.

If so, ningestigate third to see if it
is unstable.
He soypit could conceivably he, his he has not met this before

also, plot

for ε cons. at st.st.volue to corserp to BVP

$$
\begin{aligned}
& \tau \dot{y}=-y+\varepsilon(1-y)-g(y+-1) \\
& \tau \dot{\varepsilon}=k_{1} y^{2}+k_{2} y^{4}-\left(k_{3}+k_{4} g\right) \varepsilon=0 \\
& \tau \dot{g}=k_{5}\left(k_{3}+k_{4} g\right) \varepsilon-k_{6} g
\end{aligned}
$$

$$
\begin{aligned}
& 2 y=-y+(1-y) \\
& y=0, \quad k_{5}\left(k_{1} y^{2}+k_{2} y^{4}\right)=k_{6} \gamma \\
& y=0,-y+\frac{k_{1} y^{2}+k_{2}-y}{k_{3}+k_{4} g}\left(\frac{1 y}{\lambda}\right) g(y+.1)=0
\end{aligned}
$$

befthisout

$$
\begin{aligned}
&+k_{4} y^{2}(y+.1)+k_{4} y y+\left[k_{3} y-k_{1} y^{2}-k_{2} y^{4}\right)=0 \\
&+k_{3}(y+.1) y \\
&\left.y=-\left(k_{3}+k_{4}\right) y-.1 k_{3} \pm \sqrt{()^{2}-4 k_{1}(y+1)}\right)
\end{aligned}
$$

$$
\dot{g}<0, g=0: \dot{g}=k_{3} k_{5} \varepsilon
$$

Take Serie (5) or Series (7) anl eyamine for $V=0.1$

$$
V=-0.1
$$

Series(5) $R_{1}=500$.

$$
\begin{aligned}
& R_{2}=4 \times 10^{4} \\
& R_{3}=50 \\
& R_{4}=1 \text {. } \\
& R_{5}=.05 \\
& R_{5} / R_{6}=.005 \equiv \frac{1}{200} \\
& R_{6}=10 \text {. } \\
& f_{S S}=\frac{R_{5}}{R_{6}}\left(R_{1} V^{2}+R_{2} V^{4}\right)=.005\left(500 V^{2}+4 \times 100^{4} V^{4}\right) \\
& q_{S S}=\frac{R_{1} V^{2}+R_{2} V^{4}}{R_{3}+R_{4} g_{S S}}=\frac{\left(500 v^{2}+4 \times 10^{4} V^{4}\right)}{50+g S S} \\
& \text { for } V= \pm 0.1, V^{2}=10^{-2}, V^{4}=10^{-4} \\
& R_{1} V^{2}+R_{2} V^{4}=5+4=9
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
& g_{s s}=.05 \\
& \text { Ess }
\end{aligned}=\frac{.045}{50+10}=.20 .18
$$

$$
f_{1} v_{s s}=01
$$

$$
\begin{aligned}
\psi_{s s} & =v_{s s}-\varepsilon_{s s}\left(1-v_{s s}\right)+g_{s s}\left(v_{s s}+.1\right) \\
& =.1-(.2)(.9)+.05(.2) \\
& =.1-.18+.01=-.07 \\
& .162-.009=-.061
\end{aligned}
$$

$$
\begin{aligned}
f_{\text {ovss }}=-.1 \quad \psi_{s s} & =-.1-(.2)(1.1)+.0 s(\theta) \\
& =-.1-.22=-.32 \quad-.30
\end{aligned}
$$

Consider $V= \pm 0.01, \quad V^{2}=10^{-4}, \quad v^{4}=10^{-8}$

$$
R_{1} V^{2}+R_{2} V^{4}=.05+.0004 * .05
$$

$$
\text { Then } \quad \begin{aligned}
& g_{S S}=25 \times 10^{-5} \\
& C_{S S}=\frac{.05}{50}=
\end{aligned}
$$

$$
\sum_{S S}=\frac{.05}{50}=10^{-3}
$$

$$
\text { for } \begin{aligned}
v=t .01 \quad \Psi_{s S} & =+.01-10^{-3}(.99)+25 \times 10^{-5}(.11) \\
& \simeq+.009 \\
f_{n} v=-.01 \quad \Psi_{s s} & =-.01-10^{-3}(1.01)+25 \times 10^{-5}(.09) \\
& \simeq-.011
\end{aligned}
$$

\therefore zero is approx where $\varepsilon_{S S} \approx V_{S S} \approx \frac{500 \mathrm{~V}^{2}+4 \times 10^{4} \mathrm{~V}^{4}}{50}$
approx for $V \nsim 10 V^{2}$

Note: The thee suiguber points really corresp, to cubic or R2 Nome
considerfiesegn d $R_{1}=0$, then
fastest.

$$
\begin{aligned}
g_{S S}=\frac{R_{5} R_{2}}{R_{6}} V^{4} & =200 \mathrm{~V}^{4} \\
\Sigma_{S S}=\frac{R_{2} V^{4}}{R_{3}+\frac{R_{4}}{R_{2}} R_{5} V^{4}} & =\frac{4 \times 10^{4} \mathrm{~V}^{4}}{50+200 \mathrm{~V}^{4}} \\
& \approx 2 \times 10^{2} \mathrm{~V}^{4} \text { for sudll } \\
& \approx 800 \mathrm{~V}^{4}
\end{aligned}
$$

fasualle
stat. is $\psi=V-800 \mathrm{~V}^{4}(1-V)+200 \mathrm{~V}^{4}\left(V_{s}+t_{0} 1\right)$
Set $\psi=0$, oweoot is $V=0 \therefore 10^{3} V^{4}-780 \mathrm{~V}^{3}+1=0$
for suall $\quad V^{4}-.78 V^{3}+10^{-3}=0$

Consuber next

$$
\frac{x t}{1 m y} R_{1}=10^{4}
$$

Then $\begin{aligned} g_{s s} & =50 \mathrm{~V}^{2} \\ \text { Qss } & =10^{4} \mathrm{v}^{2}\end{aligned}$

$$
\begin{aligned}
\sum_{S S} & =\frac{10^{4} V^{2}}{50+50 V^{2}} \approx 200 V^{2} \\
& =\frac{200 V^{2}}{1+V^{2}} \quad \text { for } V^{2} \ll 1
\end{aligned}
$$

forstst.

$$
\begin{aligned}
\psi= & v-\left(\frac{200 v^{2}}{v+v^{2}}\right)(1-v)-50 v^{2}(v+.1) \\
f o r \psi=0 \text { get } 0 & =1-200 v\left(\frac{1-v}{1+v^{2}}\right)-50 v(v+.1) \\
& 200 v(1-v)=\left(1+v^{2}\right)(1-50 v(v+.1)) \\
& -200 v^{2}+200 v=1+v^{2}-50 v^{2}-5 v-50 v^{4}-5 v^{3}
\end{aligned}
$$

But if $v^{2} \ll 1$, ge approx

$$
\begin{aligned}
& -200 V^{2}+200 V=1-50 V^{2}-5 V \\
& -150 V^{2}+205 V-1=0 \\
& \text { Gproy } \quad V^{2}-1.33 V+.006 \cong 0 \\
& \quad(V-1.33)(V-.0045)=0
\end{aligned}
$$

Conamen
Whay wish to rumu
One case mith $R_{1}=10^{4}, R_{2}=.1$
Anothor cose with $R_{1}=1, R_{10^{-4}}=4 \times 10^{4}$
porretwring to poogs (2) (3)
There is a root between $V_{S S}=O_{0} 1$ anl $V_{S S}=0.01$
Try $V_{s s}=.05$
Then $V^{2}=25 \times 10^{-4}$

$$
V^{4}=625 \times 10^{-8}
$$

$$
R_{1} v^{2}=1.25 \quad R_{u} v^{4} \approx 10^{-5}
$$

$$
\begin{aligned}
\therefore G_{S S} & =\frac{1.25}{200}=.00625 \\
\varepsilon_{S S} & =\frac{1.25}{50+\epsilon}=.025
\end{aligned}
$$

$$
\begin{aligned}
\psi_{S S} & =.05-.025(.95)+.00625(.15) \\
& =.0594-.023 y \\
& =+.0357
\end{aligned}
$$

\therefore middle root lios botwoen $\sqrt{V}=.05$ a. $V=.1$

$$
\dot{\varepsilon}=0 \text { gross } \quad \varepsilon=\frac{k_{1} y^{2}+k_{2} y^{4}}{k_{3}+k_{4} y}
$$

If \dot{g} isalrozero, then $\varepsilon=\frac{k_{6} g}{k_{5}\left(k_{3}+k_{4} g\right)}$ also, then $g=\frac{k_{5}}{R_{6}}\left(k_{3}+k_{4} y\right) \varepsilon=\frac{k_{5}}{k_{6}}\left(k_{1} y^{2}+k_{2} y^{4}\right)$

Which gros a relation between I and y

However, for $\dot{g} \neq 0$ lin $\dot{y}=0$, then get

$$
\begin{aligned}
& 0=-y+(1-y)\left(\frac{k_{1} y^{2}+k_{2} y^{4}}{k_{3}+k_{4} y}\right)-g(y+.1) \\
& \begin{aligned}
0=-k_{3} y-k_{4} y y & -(y g+.1 y)+(1-y)\left(k_{1} y^{2}+k_{2} y^{4}\right) \\
& -k_{4} y^{2}(y+1)
\end{aligned}
\end{aligned}
$$

来

$$
k_{4}(y+01) g^{2}+\left(k_{4} y+k_{3}(y+01)\right) g+k_{3} y-(1-y)\left(k_{1} y^{2}+k_{2} y^{4}\right)=0
$$

$$
g=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Where

$$
\begin{aligned}
& a=k_{4}(y+.1) \\
& b=k_{4} y+k_{3}(y+.1) \\
& b=k_{3} y-(1-y)\left(k_{1} y^{2}+k_{2} y^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{b}{a}=\frac{y}{y+01}+\frac{k_{3}}{R_{4}} \\
& D=-\frac{1}{2}\left(\frac{b}{a}\right) \pm \frac{1}{2} \sqrt{\left(\frac{b}{a}\right)^{2}-4 \frac{c}{a}}
\end{aligned}
$$

Notice that for $y=0$,

$$
\begin{aligned}
& c=0 \\
& b=0.1 k_{3} \\
& a=0.1 k_{4}
\end{aligned}
$$

and $g=\frac{-k_{3} \pm k_{3}}{2 k_{4}}=\left\{\begin{array}{c}0 \\ 02-\frac{k_{3}}{k_{4}}\end{array}\right.$
fut we exclude - I voles for physical reasons

$$
\begin{aligned}
& f_{0} g^{\prime}=0 \quad \varepsilon=\frac{k_{6} g}{k_{5}\left(k_{3}+k_{4} g\right)} \\
& \text { extra } \\
& \text { Better }-y+\frac{k_{6} g}{k_{5}\left(k_{3}+k_{4} g\right)}(1-y)-y(y+.1)=0 \\
& \left(y+g_{y}+.1 g\right)\left(k_{5}\right)\left(k_{3}+k_{4} g\right)=k_{6} g(1-y) \\
& y^{2}(y+.1)\left(k_{5}\right)(24)+g\left(k_{5} k_{4} y+k_{5} k_{3}(y+.1)\right. \\
& \left.\rightarrow-k_{6}(1-y)\right)+k_{32} b_{5} y= \\
& \text { Guodrotic with } \\
& a=k_{4} k_{5}(y+.1) \\
& b=\left(k_{6}+k_{5}\left(k_{3}+k_{4}\right)\right) y+\frac{k_{3} k_{5}-k_{6}}{10} \\
& c=k_{3} k_{5} y \\
& y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Hypotheris
suppere there are wo really two growis of havh leng tho $\frac{\text { las }}{}$ mesely a wide range of variation.
Then the shoitar lengths are least litely to he out o are faish likely to he shoite than the thmicatd leyz ons of the lory cut havches. This mig bot ble the bais for sroyp İ

In thas nemons with less variation in lergth (perkingsmp III, also coses 344 of Noite Cols nemors) The tume bod leng ths cend to he shoiter Than bfurcating lerg thes.
Plen cosen 5, 647 to check this idea.

$$
\frac{2 r}{h}
$$

suppose $h=200$
suppose $r * 150$
$\tan \frac{2 \hat{2}}{h}=\frac{3}{2}$
is. $\frac{2}{3}$ not an $\frac{1}{3}$ cut

30 off 86 agrees pretty well with this.
of $r=500$, se $\frac{22}{h}=\frac{10}{2}=5$
\therefore chance of survival $=\frac{1}{5}$

$$
r=800, \delta^{2} \frac{2 r}{h}=\frac{16}{2}=8
$$

chare of smoiod $=\frac{1}{8}$
provided thee is straight.

volume of sphere $=\frac{4}{3} \pi r^{3}$
wolme of slob $\approx \pi r^{2} h$
$\frac{3 h}{42}=\left(\frac{3}{4}\right)\left(\frac{h}{r}\right)$
hemisphere $50 l=\frac{2}{3} \pi r^{3} \quad$ et z $z=r-\frac{h}{2}$
spherical reg less centered Slat =

$$
\frac{1}{3} \pi z^{2}(3 r-z)
$$

$$
\begin{aligned}
& \text { Suppose } z=0.9 r \text {, get } \frac{1}{3} \pi\left(.81 r^{2}\right)(2.1 r) \\
& \therefore \frac{1}{3} \pi r^{3}(1.7) \\
& \therefore \frac{\text { seg }}{\text { henghere }}=\frac{1.7}{2}=\frac{\text { slob }}{\text { sphere }}=\frac{0.3}{2}=.15
\end{aligned}
$$

Eycpifor Velouetol. inporticulen, for V from, 5 tor. 8 C mox is occurs almost simaltincors with Emeay.
Af vooke this sumplifyno anmiption Then

$$
\begin{aligned}
& \varepsilon\left(R_{3}+R_{4} g\right)=R_{1} V^{2}+R_{2} V^{4} \\
& r \frac{d g}{d t}=R_{5}\left(R_{1} v^{2}+R_{2} V^{4}\right)-R_{6} g \\
& r \frac{d q}{d t}=\operatorname{coset}-R_{6} g
\end{aligned}
$$

green an estimate of TK
conge an estinnate of

$$
\text { Then } t \frac{d \varepsilon}{d t}=\text { const }-\left(R_{3}+R_{4} f\right) \varepsilon
$$

gateriof ε
aplugnito squation for C.

$$
\begin{aligned}
& c=v-\varepsilon(1-v)+f(v+\cdot 1) \\
& \sin \frac{d c}{d t}=0 \\
& \frac{d c}{d t}=0-\frac{d \varepsilon}{d t}(1-V)+\frac{d g}{d t}(V+.1) \\
& \frac{d \varepsilon}{d t}(1-V)=\frac{d d}{d t}(V+.1) \\
& \tau \frac{d \varepsilon}{d t}=\left(R_{1} v^{2}+R_{2} v^{4}\right)-\left(R_{3}+R_{4} \delta\right) \varepsilon \\
& r \frac{d \hat{d}}{d t}=R_{5}\left(R_{3}+R_{4} \int f \varepsilon-R_{6} g\right. \\
& \left.(1-v)\left\{R_{1} r^{2}+R_{2} v^{4}-R_{3}+R_{4}\right) \varepsilon\right\}=(v+1)\{ \\
& \Longrightarrow\left\{R_{5}\left(R_{3}+R_{4} g\right) \varepsilon-R_{6}\right\}
\end{aligned}
$$

$9 / 1964$
min669 atsoma $\left(\frac{ \pm}{-1}\left(\left.=\frac{1.13}{1.59} \right\rvert\,=0.71\right.\right.$
atglom. $\left|\frac{-}{+}\right|=\left|\frac{.285}{.385}\right|=0.74$
pealitopele $\frac{\text { Soma }}{\text { glom }}=\frac{2.72}{.67}=4.06$ seruets from shisfodor

666
penne as soue $\left|\frac{7}{-}\right|=\left|\frac{.451}{1.43}\right|=0.315$

$$
\text { aglom }\left|\frac{-1}{t}\right|=\left|\frac{.115}{.345}\right|=0.334
$$

$$
\text { peok topeds } \frac{\text { some }}{\operatorname{gen}}=\frac{1.88}{.46}=4.09
$$

64794.8827 Neg prokamplitude
co. No.

4	-.3415	1.000
5	-.3329	.974
6	-.2781	.813
7	-.19 .79	.580
8	-.1136	.333
9	-.0465	.136
10	-.0279	flat
11	-.0824	.082
12	-.0514	.124
13	-.0568	.166
14	-.0595	.174

64791.0669 active

Cits 4	-1.5899	1.000
5	-1.5726	.990
6	-1.4606	.920
7	-1.1778	.740
8	-.5869	.370
9	-.2846	.180

64791.0666 passive

apts 4	-1.4298	1.000
5	-.7843	.550
6	-.3729	.260
7	-.1500	.105
8	-.0968	.068
9	-.1151	.080

Patiol Differential Cquatrons of Seconl Order Laplace Equation (elliptic Type)

$$
u_{x x}+u_{y y}+u_{z z}=0
$$

Wave Equation (hyperboliz type)

$$
u_{x x}+u_{y y}-u_{z z}=0
$$

Heat Equation (perobolic type)

$$
u_{z}=u_{x x}+u_{y y}
$$

MixedType $L(u)=a u_{x x}+2 b-t_{x y}+C u_{y y}$
alliptic if $a c-b^{2}>0$
Lupertoliz. $a c-b^{2}<0$
parobolic $a c-b^{2}=0$

Cole. mod. of 64791.0666
$9 / 17 / 64$

At compertment 6 Regri arith monshinte volues

pop pactiviel diviber shist.

$$
\begin{array}{llllllll}
P=0.2 * S & -.051 & -.349 & -.065 & .101 & .085 & -.228 & .103 \\
N U-P & +.015 & .078 & -.155 & -.046 & .022 & -.122 & .021
\end{array}
$$

Compere with old shinted volves (uic6)

$$
\begin{array}{llllll}
-.016 & -.151 & -.294 & .006 & .096 & -.373
\end{array}
$$

